{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "85d6656d-13d2-4cb4-8404-d1fdf6af354e", "metadata": {}, "source": [ "# Example-05: Drift (element)" ] }, { "cell_type": "code", "execution_count": 1, "id": "942d635e-4ba0-4b82-89f3-a55e423f5f10", "metadata": {}, "outputs": [], "source": [ "# Comparison of drift element with MADX-PTC and other features" ] }, { "cell_type": "code", "execution_count": 2, "id": "94da4e4d-ea80-4f6d-8b7c-d541629a3c23", "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "from os import system\n", "\n", "import torch\n", "from model.library.drift import Drift" ] }, { "cell_type": "code", "execution_count": 3, "id": "5c39499a-c10e-4dfb-99f7-abd58e326dcc", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.0025373134328358204, -0.005, -0.003507462686567164, 0.001]\n", "[0.0025373134328358204, -0.005, -0.0035074626865671645, 0.001]\n", "[0.0, 0.0, 4.336808689942018e-19, 0.0]\n" ] } ], "source": [ "# Tracking (paraxial)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = False\n", "align = False\n", "\n", "dp = 0.005\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag:drift,l={length} ;\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "D = Drift('D', length=length, dp=dp, exact=exact)\n", "res = D(state, alignment=align, data={**D.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 4, "id": "5ae0a652-05ba-4f39-b7ae-009373ddfa3f", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.002537217378977325, -0.005, -0.003507443475795465, 0.001]\n", "[0.002537217378977325, -0.005, -0.0035074434757954654, 0.001]\n", "[0.0, 0.0, 4.336808689942018e-19, 0.0]\n" ] } ], "source": [ "# Tracking (exact)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = True\n", "align = False\n", "\n", "dp = 0.005\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag:drift,l={length} ;\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "D = Drift('D', length=length, dp=dp, exact=exact)\n", "res = D(state, alignment=align, data={**D.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 5, "id": "e0bba0d5-03e3-43ad-9955-05aa21a0b360", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.0025372170792497145, -0.0049999999999999975, -0.003507395297032926, 0.0010000000000000009]\n", "[0.0025372170792497166, -0.004999999999999999, -0.0035073952970329247, 0.0010000000000000018]\n", "[-2.168404344971009e-18, 1.734723475976807e-18, -1.3010426069826053e-18, -8.673617379884035e-19]\n" ] } ], "source": [ "# Tracking (exact, alignment)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = False\n", "align = True\n", "\n", "dp = 0.005\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag:drift,l={length} ;\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "D = Drift('D', length=length, dp=dp, exact=exact)\n", "res = D(state, alignment=align, data={**D.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()\n", "\n", "# Note, for some reason drift is not invariant under WX ans WY rotations in MADX" ] }, { "cell_type": "code", "execution_count": 6, "id": "c3422dd0-926f-4f3b-9150-a2e7c2042351", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 0.0025, -0.0050, -0.0035, 0.0010], dtype=torch.float64)\n", "\n", "tensor([ 0.0100, -0.0050, -0.0050, 0.0010], dtype=torch.float64)\n", "\n", "tensor([ 0.0025, -0.0050, -0.0035, 0.0010], dtype=torch.float64)\n", "\n", "tensor([0., 0., 0., 0.], dtype=torch.float64)\n" ] } ], "source": [ "# Deviation/error variables\n", "\n", "dp = 0.005\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp)\n", "\n", "# Each element has two variant of a call method\n", "# In the first case only state is passed, it is transformed using parameters specified on initializaton\n", "\n", "print(D(state))\n", "print()\n", "\n", "# Deviation errors can be also passed to call method\n", "# These variables are added to corresponding parameters specified on initializaton\n", "# For example, element lenght can changed\n", "\n", "print(D(state, data={**D.data(), **{'dl': torch.tensor(-length, dtype=D.dtype)}}))\n", "print()\n", "\n", "# In the above D.data() creates default deviation dictionary (with zero values for each deviaton)\n", "# {**D.data(), **{'dl': torch.tensor(-length, dtype=DR.dtype)}} replaces the 'dl' key value \n", "\n", "# Additionaly, alignment errors are passed as deivation variables\n", "# They are used if alignment flag is raised\n", "\n", "print(D(state, data={**D.data(), **error}, alignment=True))\n", "print()\n", "\n", "# The following elements can be made equivalent using deviation variables\n", "\n", "DA = Drift('DA', length, dp)\n", "DB = Drift('DB', length - 0.1, dp)\n", "\n", "print(DA(state) - DB(state, data={**DB.data(), **{'dl': torch.tensor(+0.1, dtype=DB.dtype)}}))" ] }, { "cell_type": "code", "execution_count": 7, "id": "3850f79d-c1b7-40c5-8407-1802852021cb", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([0., 0., 0., 0.], dtype=torch.float64)\n", "tensor([-0.0005, 0.0000, 0.0001, 0.0000], dtype=torch.float64)\n", "tensor([-9.7502e-08, 0.0000e+00, 1.9500e-08, 0.0000e+00],\n", " dtype=torch.float64)\n" ] } ], "source": [ "# Insertion element\n", "\n", "# In this mode elements are treated as thin insertions (at the center)\n", "# Using parameters specified on initialization, transport two matrices are computed\n", "# These matrices are used to insert the element\n", "# Input state is transformed from the element center to its entrance\n", "# Next, transformation from the entrance frame to the exit frame is performed\n", "# This transformation can contain errors\n", "# The final step is to transform state from the exit frame back to the element center\n", "# Without errors, this results in identity transformation for linear elements\n", "\n", "dp = 0.0\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp, exact=False, insertion=True)\n", "\n", "# Identity transformation without errors\n", "\n", "print(D(state) - state)\n", "\n", "# Represents effect of an error\n", "\n", "print(D(state, data={**D.data(), **{'dl': 0.1}}) - state)\n", "\n", "# Exact tracking corresponds to inclusion of kinematic term as errors\n", "\n", "D = Drift('D', length, dp, exact=True, insertion=True)\n", "\n", "print(D(state) - state)" ] }, { "cell_type": "code", "execution_count": 8, "id": "b5146cc0-6f5b-47b9-9317-939ca62bbc9b", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([512, 4])\n", "torch.Size([512, 4])\n" ] } ], "source": [ "# Mapping over a set of initial conditions\n", "\n", "# Call method can be used to map over a set of initial conditions\n", "# Note, device can be set to cpu or gpu via base element classvariables\n", "\n", "dp = 0.0\n", "length = 1.5\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp, exact=True)\n", "\n", "state = 1.0E-3*torch.randn((512, 4), dtype=D.dtype, device=D.device)\n", "\n", "print(torch.vmap(D)(state).shape)\n", "\n", "# To map over deviations parameters a wrapper function (or a lambda expression) can be used\n", "\n", "def wrapper(state, dp):\n", " return D(state, data={**D.data(), **{'dp': dp}})\n", "\n", "dp = 1.0E-3*torch.randn(512, dtype=D.dtype, device=D.device)\n", "\n", "print(torch.vmap(wrapper)(state, dp).shape)" ] }, { "cell_type": "code", "execution_count": 9, "id": "3020a87b-b812-4657-a53f-f163959d9d67", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[1.0000, 1.5000, 0.0000, 0.0000],\n", " [0.0000, 1.0000, 0.0000, 0.0000],\n", " [0.0000, 0.0000, 1.0000, 1.5000],\n", " [0.0000, 0.0000, 0.0000, 1.0000]], dtype=torch.float64)\n", "\n", "tensor([-0.0050, 0.0000, 0.0010, 0.0000], dtype=torch.float64)\n", "\n" ] }, { "data": { "text/plain": [ "tensor(-0., dtype=torch.float64)" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Differentiability\n", "\n", "# Both call methods are differentiable\n", "# Derivative with respect to state can be computed directly\n", "# For deviation variables, wrapping is required\n", "\n", "dp = 0.0\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp, exact=False)\n", "\n", "# Compute derivative with respect to state\n", "\n", "print(torch.func.jacrev(D)(state))\n", "print()\n", "\n", "# Compute derivative with respect to a deviation variable\n", "\n", "dl = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "def wrapper(state, dl):\n", " return D(state, data={**D.data(), **{'dl': dl}})\n", "\n", "print(torch.func.jacrev(wrapper, 1)(state, dl))\n", "print()\n", "\n", "# Compositional derivative (compute derivative of jacobian trace with respect momentum deviation)\n", "\n", "dp = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "def trace(state, dp):\n", " return (torch.func.jacrev(lambda state: D(state, data={**D.data(), **{'dp': dp}}))(state)).trace()\n", "\n", "torch.func.jacrev(trace, 1)(state, dp)" ] }, { "cell_type": "code", "execution_count": 10, "id": "c906a277-85a1-451c-9d08-79505a16a072", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 0.0025, -0.0050, -0.0035, 0.0010], dtype=torch.float64)\n", "torch.Size([10, 4])\n", "torch.Size([10, 4, 4])\n", "torch.Size([100, 4])\n", "torch.Size([100, 4, 4])\n" ] } ], "source": [ "# Output at each step\n", "\n", "# It is possible to collect output of state or tangent matrix at each integration step\n", "# Number of integratin steps is controlled by ns parameter on initialization\n", "# Alternatively, desired integration step length can be passed\n", "# Number of integration steps is computed as ceil(length/ds)\n", "\n", "dp = 0.0\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp, exact=False, ns=10, output=True, matrix=True)\n", "\n", "# Final state is still returned\n", "\n", "print(D(state))\n", "\n", "# Data is added to special attributes (state and tangent matrix)\n", "\n", "print(D.container_output.shape)\n", "print(D.container_matrix.shape)\n", "\n", "# Number of integration steps can be changed\n", "\n", "D.ns = 100\n", "\n", "D(state)\n", "print(D.container_output.shape)\n", "print(D.container_matrix.shape)" ] }, { "cell_type": "code", "execution_count": 11, "id": "4c9992c3-1047-43ae-8be5-c90bb10c9123", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.002499902498098708, -0.005, -0.003499980499619743, 0.001]\n", "[0.002499902498098709, -0.005, -0.0034999804996197477, 0.001]\n", "[-8.673617379884035e-19, 0.0, 4.7704895589362195e-18, 0.0]\n", "\n", "[0, 1, 0, 1, 0, 1, 0]\n", "[0.6756035959798289, 1.3512071919596578, -0.17560359597982877, -1.7024143839193153, -0.17560359597982877, 1.3512071919596578, 0.6756035959798289]\n" ] } ], "source": [ "# Integration order is set on initialization (default value is zero)\n", "# This order is related to difference order as 2n + 2\n", "# Thus, zero corresponds to second order difference method\n", "\n", "dp = 0.0\n", "length = 1.5\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "D = Drift('D', length, dp, order=1, exact=True)\n", "\n", "# For drift integration is performed only with exact flag\n", "# In this case, kinematic term error is added\n", "# This term actually commutes with paraxial drift map\n", "# But integration is still performed for consistency with matrix-kick-matrix split\n", "# Only one integration step is required to get exact result\n", "\n", "D.ns = 1\n", "ref = D(state)\n", "\n", "D.ns = 10\n", "res = D(state)\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "print()\n", "\n", "# Integrator parameters are stored in data attribute (if integration is actually performed)\n", "\n", "maps, weights = D._data\n", "print(maps)\n", "print(weights)" ] } ], "metadata": { "colab": { "collapsed_sections": [ "myt0_gMIOq7b", "5d97819c" ], "name": "03_frequency.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 5 }