{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "9a5af188-3962-4346-b9e7-69c0fd7913ab", "metadata": {}, "source": [ "# Example-08: Octupole (element)" ] }, { "cell_type": "code", "execution_count": 1, "id": "7e7c4591-356c-498f-a12d-b11234e962ad", "metadata": {}, "outputs": [], "source": [ "# Comparison of octupole element with MADX-PTC and other features" ] }, { "cell_type": "code", "execution_count": 2, "id": "6366eebc-548d-4631-8a28-a9e55b3baebb", "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "from os import system\n", "\n", "import torch\n", "from model.library.octupole import Octupole" ] }, { "cell_type": "code", "execution_count": 3, "id": "d1e16585-2e20-4c2c-a98d-3115473dbeae", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.009004942132987458, -0.005000291994759593, -0.004801204788639501, 0.0009979801079392878]\n", "[0.009004942132987486, -0.005000291994759635, -0.004801204788639504, 0.0009979801079392843]\n", "[-2.7755575615628914e-17, 4.2500725161431774e-17, 3.469446951953614e-18, 3.469446951953614e-18]\n" ] } ], "source": [ "# Tracking (paraxial)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = False\n", "align = False\n", "\n", "mo = + 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag: octupole, l={length},k3={mo};\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "O = Octupole('O', length=length, mo=mo, dp=dp, exact=exact, order=5, ns=10)\n", "res = O(state, alignment=align, data={**O.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 4, "id": "7103c0ad-ebe8-4712-8124-9107d046db6c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.00900492932570409, -0.005000291993307186, -0.004801202229721349, 0.0009979801112567327]\n", "[0.009004929325704207, -0.0050002919933071705, -0.004801202229721335, 0.00099798011125672]\n", "[-1.1622647289044608e-16, -1.5612511283791264e-17, -1.3877787807814457e-17, 1.2576745200831851e-17]\n" ] } ], "source": [ "# Tracking (exact)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = True\n", "align = False\n", "\n", "mo = + 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag: octupole, l={length},k3={mo};\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "O = Octupole('O', length=length, mo=mo, dp=dp, exact=exact, order=5, ns=10)\n", "res = O(state, alignment=align, data={**O.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 5, "id": "b1afc429-20bf-4780-9267-4e416b1c7a66", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.009005660276793346, -0.004983923494470567, -0.004794436076349048, 0.0011299481578555504]\n", "[0.009005660276792638, -0.004983923494470562, -0.004794436076348805, 0.0011299481578555233]\n", "[7.077671781985373e-16, -5.204170427930421e-18, -2.42861286636753e-16, 2.710505431213761e-17]\n" ] } ], "source": [ "# Tracking (exact, alignment)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = True\n", "align = True\n", "\n", "mo = + 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag: octupole, l={length},k3={mo};\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "O = Octupole('O', length=length, mo=mo, dp=dp, exact=exact, order=5, ns=10)\n", "res = O(state, alignment=align, data={**O.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 6, "id": "b5d27e5b-0f6c-4d62-91f4-afd2eabf0872", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 0.0090, -0.0050, -0.0048, 0.0010], dtype=torch.float64)\n", "\n", "tensor([ 0.0100, -0.0050, -0.0050, 0.0010], dtype=torch.float64)\n", "\n", "tensor([ 0.0090, -0.0050, -0.0048, 0.0011], dtype=torch.float64)\n", "\n", "tensor([0., 0., 0., 0.], dtype=torch.float64)\n" ] } ], "source": [ "# Deviation/error variables\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp)\n", "\n", "# Each element has two variant of a call method\n", "# In the first case only state is passed, it is transformed using parameters specified on initializaton\n", "\n", "print(O(state))\n", "print()\n", "\n", "# Deviation errors can be also passed to call method\n", "# These variables are added to corresponding parameters specified on initializaton\n", "# For example, element lenght can changed\n", "\n", "print(O(state, data={**O.data(), **{'dl': -O.length}}))\n", "print()\n", "\n", "# In the above O.data() creates default deviation dictionary (with zero values for each deviaton)\n", "# {**O.data(), **{'dl': -O.length}} replaces the 'dl' key value \n", "\n", "# Additionaly, alignment errors are passed as deivation variables\n", "# They are used if alignment flag is raised\n", "\n", "print(O(state, data={**O.data(), **error}, alignment=True))\n", "print()\n", "\n", "# The following elements can be made equivalent using deviation variables\n", "\n", "OA = Octupole('OA', length, mo, dp)\n", "OB = Octupole('OB', length - 0.1, mo, dp)\n", "\n", "print(OA(state) - OB(state, data={**OB.data(), **{'dl': torch.tensor(+0.1, dtype=OB.dtype)}}))\n", "\n", "# Note, while in some cases float values can be passed as values to deviation variables\n", "# The correct behaviour in guaranteed only for tensors" ] }, { "cell_type": "code", "execution_count": 7, "id": "ca7cf2e5-590b-41eb-b08c-61b20de24ad6", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 0.0000e+00, -4.1667e-07, 0.0000e+00, -2.2917e-06],\n", " dtype=torch.float64)\n", "tensor([0., 0., 0., 0.], dtype=torch.float64)\n", "tensor([-4.9754e-04, -5.2588e-07, 9.9342e-05, -3.2270e-06],\n", " dtype=torch.float64)\n", "tensor([-1.7351e-08, -4.1976e-07, -6.9314e-09, -2.2953e-06],\n", " dtype=torch.float64)\n" ] } ], "source": [ "# Insertion element\n", "\n", "# In this mode elements are treated as thin insertions (at the center)\n", "# Using parameters specified on initialization, transport two matrices are computed\n", "# These matrices are used to insert the element\n", "# Input state is transformed from the element center to its entrance\n", "# Next, transformation from the entrance frame to the exit frame is performed\n", "# This transformation can contain errors\n", "# The final step is to transform state from the exit frame back to the element center\n", "# Without errors, this results in identity transformation for linear elements\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp, exact=False, insertion=True)\n", "\n", "# Since octupole is a nonlinear element, insertion is an identity transformation only for zero strenght\n", "\n", "print(O(state) - state)\n", "print(O(state, data={**O.data(), **{'mo': -mo}}) - state)\n", "\n", "# Represents effect of an error (any nonzero value of strengh or a change in other parameter)\n", "\n", "print(O(state, data={**O.data(), **{'dl': 0.1}}) - state)\n", "\n", "# Exact tracking corresponds to inclusion of kinematic term as errors\n", "\n", "O = Octupole('O', length, mo, dp, exact=True, insertion=True, ns=100, order=1)\n", "\n", "print(O(state) - state)" ] }, { "cell_type": "code", "execution_count": 8, "id": "58995f82-17dc-400b-b7b2-0b14ac5e0296", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([512, 4])\n", "torch.Size([512, 4])\n" ] } ], "source": [ "# Mapping over a set of initial conditions\n", "\n", "# Call method can be used to map over a set of initial conditions\n", "# Note, device can be set to cpu or gpu via base element classvariables\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp, exact=True)\n", "\n", "state = 1.0E-3*torch.randn((512, 4), dtype=O.dtype, device=O.device)\n", "\n", "print(torch.vmap(O)(state).shape)\n", "\n", "# To map over deviations parameters a wrapper function (or a lambda expression) can be used\n", "\n", "def wrapper(state, dp):\n", " return O(state, data={**O.data(), **{'dp': dp}})\n", "\n", "dp = 1.0E-3*torch.randn(512, dtype=O.dtype, device=O.device)\n", "\n", "print(torch.vmap(wrapper)(state, dp).shape)" ] }, { "cell_type": "code", "execution_count": 9, "id": "bbb81635-b354-4392-9735-a0a758ef89f7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 9.9997e-01, 1.9900e-01, -4.6335e-05, -4.6105e-06],\n", " [-3.3141e-04, 9.9997e-01, -4.6567e-04, -4.6335e-05],\n", " [-4.6335e-05, -4.6105e-06, 1.0000e+00, 1.9901e-01],\n", " [-4.6567e-04, -4.6335e-05, 3.3141e-04, 1.0000e+00]],\n", " dtype=torch.float64)\n", "\n", "tensor([-5.7528e-10, -5.7815e-09, -4.0127e-09, -4.0327e-08],\n", " dtype=torch.float64)\n", "\n" ] } ], "source": [ "# Differentiability\n", "\n", "# Both call methods are differentiable\n", "# Derivative with respect to state can be computed directly\n", "# For deviation variables, wrapping is required\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp, exact=False)\n", "\n", "# Compute derivative with respect to state\n", "\n", "print(torch.func.jacrev(O)(state))\n", "print()\n", "\n", "# Compute derivative with respect to a deviation variable\n", "\n", "mo = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "def wrapper(state, mo):\n", " return O(state, data={**O.data(), **{'mo': mo}})\n", "\n", "print(torch.func.jacrev(wrapper, 1)(state, mo))\n", "print()" ] }, { "cell_type": "code", "execution_count": 10, "id": "90577ad9-b390-4bc4-9c4b-21e7feb03a5e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 0.0090, -0.0050, -0.0048, 0.0010], dtype=torch.float64)\n", "torch.Size([10, 4])\n", "torch.Size([10, 4, 4])\n", "torch.Size([100, 4])\n", "torch.Size([100, 4, 4])\n" ] } ], "source": [ "# Output at each step\n", "\n", "# It is possible to collect output of state or tangent matrix at each integration step\n", "# Number of integratin steps is controlled by ns parameter on initialization\n", "# Alternatively, desired integration step length can be passed\n", "# Number of integration steps is computed as ceil(length/ds)\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp, exact=False, ns=10, output=True, matrix=True)\n", "\n", "# Final state is still returned\n", "\n", "print(O(state))\n", "\n", "# Data is added to special attributes (state and tangent matrix)\n", "\n", "print(O.container_output.shape)\n", "print(O.container_matrix.shape)\n", "\n", "# Number of integration steps can be changed\n", "\n", "O.ns = 100\n", "\n", "O(state)\n", "print(O.container_output.shape)\n", "print(O.container_matrix.shape)" ] }, { "cell_type": "code", "execution_count": 11, "id": "5591a125-3e10-489d-94ce-79c60e0a15e3", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.00900492936806216, -0.005000291964120008, -0.004801202138358545, 0.0009979801465156844]\n", "[0.00900492932612774, -0.005000291993015304, -0.004801202228807697, 0.0009979801116093128]\n", "[4.193442121325219e-11, 2.889529587823958e-11, 9.044915164069245e-11, 3.4906371629978006e-11]\n", "\n", "[0, 1, 2, 1, 0]\n", "[0.5, 0.5, 1.0, 0.5, 0.5]\n" ] } ], "source": [ "# Integration order is set on initialization (default value is zero)\n", "# This order is related to difference order as 2n + 2\n", "# Thus, zero corresponds to second order difference method\n", "\n", "mo = 50.0\n", "dp = 0.005\n", "length = 0.2\n", "state = torch.tensor([0.01, -0.005, -0.005, 0.001], dtype=torch.float64)\n", "\n", "dx = torch.tensor(0.05, dtype=torch.float64)\n", "dy = torch.tensor(-0.02, dtype=torch.float64)\n", "dz = torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.005, dtype=torch.float64)\n", "wy = torch.tensor(-0.005, dtype=torch.float64)\n", "wz = torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "O = Octupole('O', length, mo, dp, order=0, exact=True)\n", "\n", "# For octupole integration is always performed\n", "# In exact case, kinematic term error is added\n", "\n", "O.ns = 10\n", "ref = O(state)\n", "\n", "O.ns = 100\n", "res = O(state)\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "print()\n", "\n", "# Integrator parameters are stored in data attribute (if integration is actually performed)\n", "\n", "maps, weights = O._data\n", "print(maps)\n", "print(weights)" ] } ], "metadata": { "colab": { "collapsed_sections": [ "myt0_gMIOq7b", "5d97819c" ], "name": "03_frequency.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 5 }