{ "cells": [ { "attachments": {}, "cell_type": "markdown", "id": "240c12c4-8fe9-4d7d-a941-e2fe79d1190e", "metadata": {}, "source": [ "# Example-13: Kick (element)" ] }, { "cell_type": "code", "execution_count": 1, "id": "093201fe-a8ec-41e3-8b44-f557a093b695", "metadata": {}, "outputs": [], "source": [ "# Comparison of kick element with MADX-PTC and other features" ] }, { "cell_type": "code", "execution_count": 2, "id": "1d032d6b-f215-4fc8-885d-cf41ca47eaed", "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "from os import system\n", "\n", "import torch\n", "from model.library.kick import Kick" ] }, { "cell_type": "code", "execution_count": 3, "id": "ee0fe349-80f3-4ca1-89cd-4220cc2d113d", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.001, 0.00011938333333333334, -0.005, -5.091666666666667e-05]\n", "[0.001, 0.00011938333333333334, -0.005, -5.0916666666666666e-05]\n", "[0.0, 0.0, 0.0, -6.776263578034403e-21]\n" ] } ], "source": [ "# Tracking\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = True\n", "align = False\n", "\n", "ms = +10.0\n", "mo = -50.0\n", "\n", "dp = 0.005\n", "\n", "state = torch.tensor([0.001, 0.0, -0.005, 0.0], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag: multipole,knl={{0.0,0.0,{ms},{mo}}};\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "K = Kick('K', ms=ms, mo=mo, dp=dp)\n", "res = K(state, alignment=align, data={**K.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 4, "id": "fa33a45c-27ca-4881-ab50-9a45b0c422b7", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[0.0014217329730612119, -0.00853058669498686, -0.004440545938333818, -0.011316334457474285]\n", "[0.0014217329730612169, -0.008530586694986856, -0.004440545938333821, -0.011316334457474281]\n", "[-4.9873299934333204e-18, -3.469446951953614e-18, 2.6020852139652106e-18, -3.469446951953614e-18]\n" ] } ], "source": [ "# Tracking (alignment)\n", "\n", "ptc = Path('ptc')\n", "obs = Path('track.obs0001.p0001')\n", "\n", "exact = True\n", "align = True\n", "\n", "ms = +10.0\n", "mo = -50.0\n", "\n", "dp = 0.005\n", "\n", "state = torch.tensor([0.001, 0.0, -0.005, 0.0], dtype=torch.float64)\n", "qx, px, qy, py = state.tolist()\n", "\n", "dx = align*torch.tensor(0.05, dtype=torch.float64)\n", "dy = align*torch.tensor(-0.02, dtype=torch.float64)\n", "dz = align*torch.tensor(0.05, dtype=torch.float64)\n", "\n", "wx = align*torch.tensor(0.005, dtype=torch.float64)\n", "wy = align*torch.tensor(-0.005, dtype=torch.float64)\n", "wz = align*torch.tensor(0.1, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "code = f\"\"\"\n", "mag: multipole,knl={{0.0,0.0,{ms},{mo}}};\n", "map:line=(mag) ;\n", "beam,energy=1.0E+6,particle=electron ;\n", "set,format=\"20.20f\",\"-20s\" ;\n", "use,period=map ;\n", "select,flag=error,pattern=\"mag\" ;\n", "ealign,dx={dx.item()},dy={dy.item()},ds={dz.item()},dphi={wx.item()},dtheta={wy.item()},dpsi={wz.item()} ;\n", "ptc_create_universe,sector_nmul_max=10,sector_nmul=10 ;\n", "ptc_create_layout,model=1,method=6,nst=1000,exact={str(exact).lower()} ;\n", "ptc_setswitch,fringe=false,time=true,totalpath=true,exact_mis=true ;\n", "ptc_align ;\n", "ptc_start,x={qx},px={px},y={qy},py={py},pt={dp},t=0.0 ;\n", "ptc_track,icase=5,deltap=0.,turns=1,file=track,maxaper={{1.,1.,1.,1.,1.,1.}} ;\n", "ptc_track_end ;\n", "ptc_end ;\n", "\"\"\" \n", "\n", "with ptc.open('w') as stream:\n", " stream.write(code)\n", " \n", "system(f'madx < {str(ptc)} > /dev/null')\n", "\n", "with obs.open('r') as stream:\n", " for line in stream:\n", " continue\n", " _, _, qx, px, qy, py, *_ = line.split()\n", " \n", "ref = torch.tensor([float(x) for x in (qx, px, qy, py)], dtype=torch.float64)\n", "\n", "K = Kick('K', ms=ms, mo=mo, dp=dp)\n", "res = K(state, alignment=align, data={**K.data(), **error})\n", "\n", "print(ref.tolist())\n", "print(res.tolist())\n", "print((ref - res).tolist())\n", "\n", "ptc.unlink()\n", "obs.unlink()" ] }, { "cell_type": "code", "execution_count": 5, "id": "45f40daa-9d13-4ce9-8607-f49e2d13ad00", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([ 1.0000e-03, 1.1938e-04, -5.0000e-03, -5.0917e-05],\n", " dtype=torch.float64)\n", "\n", "tensor([ 0.0010, 0.0000, -0.0050, 0.0000], dtype=torch.float64)\n", "\n", "tensor([ 0.0010, 0.0003, -0.0050, 0.0004], dtype=torch.float64)\n", "\n", "tensor([0., 0., 0., 0.], dtype=torch.float64)\n" ] } ], "source": [ "# Deviation/error variables\n", "\n", "ms = +10.0\n", "mo = -50.0\n", "dp = 0.005\n", "state = torch.tensor([0.001, 0.0, -0.005, 0.0], dtype=torch.float64)\n", "\n", "dx = torch.tensor(+0.01, dtype=torch.float64)\n", "dy = torch.tensor(-0.01, dtype=torch.float64)\n", "dz = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.0, dtype=torch.float64)\n", "wy = torch.tensor(0.0, dtype=torch.float64)\n", "wz = torch.tensor(torch.pi, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "K = Kick('K', ms, mo, dp)\n", "\n", "# Each element has two variant of a call method\n", "# In the first case only state is passed, it is transformed using parameters specified on initializaton\n", "\n", "print(K(state))\n", "print()\n", "\n", "# Deviation errors can be also passed to call method\n", "# These variables are added to corresponding parameters specified on initializaton\n", "# For example, element lenght can changed\n", "\n", "print(K(state, data={**K.data(), **{'ms': -ms, 'mo': -mo}}))\n", "print()\n", "\n", "# In the above K.data() creates default deviation dictionary (with zero values for each deviaton)\n", "# {**K.data(), **{'ms': -ms, 'mo': -mo}} replaces the 'ms' and 'mo' key values \n", "\n", "# Additionaly, alignment errors are passed as deivation variables\n", "# They are used if alignment flag is raised\n", "\n", "print(K(state, data={**K.data(), **error}, alignment=True))\n", "print()\n", "\n", "\n", "# The following elements can be made equivalent using deviation variables\n", "\n", "KA = Kick('KA', ms, mo, dp)\n", "KB = Kick('KB', ms - 0.1, mo, dp)\n", "\n", "print(KA(state) - KB(state, data={**KB.data(), **{'ms': + 0.1}}))" ] }, { "cell_type": "code", "execution_count": 6, "id": "cd9ed885-d813-48c5-ae6e-eb52e9116657", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([512, 4])\n", "torch.Size([512, 4])\n" ] } ], "source": [ "# Mapping over a set of initial conditions\n", "\n", "# Call method can be used to map over a set of initial conditions\n", "# Note, device can be set to cpu or gpu via base element classvariables\n", "\n", "ms = +10.0\n", "mo = -50.0\n", "dp = 0.005\n", "\n", "dx = torch.tensor(+0.01, dtype=torch.float64)\n", "dy = torch.tensor(-0.01, dtype=torch.float64)\n", "dz = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.0, dtype=torch.float64)\n", "wy = torch.tensor(0.0, dtype=torch.float64)\n", "wz = torch.tensor(torch.pi, dtype=torch.float64)\n", "\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "K = Kick('K', ms, mo, dp)\n", "\n", "state = 1.0E-3*torch.randn((512, 4), dtype=K.dtype, device=K.device)\n", "\n", "print(torch.vmap(K)(state).shape)\n", "\n", "# To map over deviations parameters a wrapper function (or a lambda expression) can be used\n", "\n", "def wrapper(state, ms, mo):\n", " return K(state, data={**K.data(), **{'ms': ms, 'mo': mo}})\n", "\n", "kn = 1.0E-3*torch.randn(512, dtype=K.dtype, device=K.device)\n", "ks = 1.0E-3*torch.randn(512, dtype=K.dtype, device=K.device)\n", "\n", "print(torch.vmap(wrapper)(state, kn, ks).shape)" ] }, { "cell_type": "code", "execution_count": 7, "id": "4f0505ce-aa7e-40fd-9ab1-a34161b0cabf", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 1.0000, 0.0000, 0.0000, 0.0000],\n", " [-0.0106, 1.0000, -0.0498, 0.0000],\n", " [ 0.0000, 0.0000, 1.0000, 0.0000],\n", " [-0.0498, 0.0000, 0.0106, 1.0000]], dtype=torch.float64)\n", "\n", "tensor([[ 0.0000e+00, 0.0000e+00],\n", " [ 1.2000e-05, 1.2333e-08],\n", " [ 0.0000e+00, 0.0000e+00],\n", " [-5.0000e-06, 1.8333e-08]], dtype=torch.float64)\n", "\n" ] } ], "source": [ "# Differentiability\n", "\n", "# Both call methods are differentiable\n", "# Derivative with respect to state can be computed directly\n", "# For deviation variables, wrapping is required\n", "\n", "ms = +10.0\n", "mo = -50.0\n", "dp = 0.005\n", "state = torch.tensor([0.001, 0.0, -0.005, 0.0], dtype=torch.float64)\n", "\n", "dx = torch.tensor(+0.01, dtype=torch.float64)\n", "dy = torch.tensor(-0.01, dtype=torch.float64)\n", "dz = torch.tensor(0.0, dtype=torch.float64)\n", "\n", "wx = torch.tensor(0.0, dtype=torch.float64)\n", "wy = torch.tensor(0.0, dtype=torch.float64)\n", "wz = torch.tensor(torch.pi, dtype=torch.float64)\n", "error = {'dx': dx, 'dy': dy, 'dz': dz, 'wx': wx, 'wy': wy, 'wz': wz}\n", "\n", "K = Kick('K', ms, mo, dp)\n", "\n", "# Compute derivative with respect to state\n", "\n", "print(torch.func.jacrev(K)(state))\n", "print()\n", "\n", "# Compute derivative with respect to a deviation variable\n", "\n", "dms = torch.tensor(0.0, dtype=torch.float64)\n", "dmo = torch.tensor(0.0, dtype=torch.float64)\n", "dm = torch.stack([dms, dmo])\n", "\n", "def wrapper(state, dm):\n", " dms, dmo = dm\n", " return K(state, data={**K.data(), **{'ms': dms, 'mo': dmo}})\n", "\n", "print(torch.func.jacrev(wrapper, 1)(state, dm))\n", "print()" ] } ], "metadata": { "colab": { "collapsed_sections": [ "myt0_gMIOq7b", "5d97819c" ], "name": "03_frequency.ipynb", "provenance": [] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.1" }, "latex_envs": { "LaTeX_envs_menu_present": true, "autoclose": false, "autocomplete": true, "bibliofile": "biblio.bib", "cite_by": "apalike", "current_citInitial": 1, "eqLabelWithNumbers": true, "eqNumInitial": 1, "hotkeys": { "equation": "Ctrl-E", "itemize": "Ctrl-I" }, "labels_anchors": false, "latex_user_defs": false, "report_style_numbering": false, "user_envs_cfg": false } }, "nbformat": 4, "nbformat_minor": 5 }