Example-52: Normalized dispersion
[1]:
# In this example normalized dispersion is used for optics correction along with CS twiss parameters
[2]:
# Import
from pprint import pprint
import torch
from torch import Tensor
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
from pathlib import Path
import matplotlib
from matplotlib import pyplot as plt
matplotlib.rcParams['text.usetex'] = True
from model.library.line import Line
from model.command.util import select
from model.command.external import load_sdds
from model.command.external import load_lattice
from model.command.build import build
from model.command.wrapper import group
from model.command.wrapper import forward
from model.command.wrapper import inverse
from model.command.wrapper import normalize
from model.command.wrapper import Wrapper
from model.command.orbit import dispersion
from model.command.tune import tune
from model.command.twiss import twiss
[3]:
# Load ELEGANT twiss
path = Path('ic.twiss')
parameters, columns = load_sdds(path)
nu_qx:Tensor = torch.tensor(parameters['nux'] % 1, dtype=torch.float64)
nu_qy:Tensor = torch.tensor(parameters['nuy'] % 1, dtype=torch.float64)
# Set twiss parameters at BPMs
kinds = select(columns, 'ElementType', keep=False)
a_qx = select(columns, 'alphax', keep=False)
b_qx = select(columns, 'betax' , keep=False)
a_qy = select(columns, 'alphay', keep=False)
b_qy = select(columns, 'betay' , keep=False)
a_qx:Tensor = torch.tensor([value for (key, value), kind in zip(a_qx.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
b_qx:Tensor = torch.tensor([value for (key, value), kind in zip(b_qx.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
a_qy:Tensor = torch.tensor([value for (key, value), kind in zip(a_qy.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
b_qy:Tensor = torch.tensor([value for (key, value), kind in zip(b_qy.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
eta_qx = select(columns, 'etax' , keep=False)
eta_px = select(columns, 'etaxp', keep=False)
eta_qy = select(columns, 'etay' , keep=False)
eta_py = select(columns, 'etayp', keep=False)
eta_qx:Tensor = torch.tensor([value for (key, value), kind in zip(eta_qx.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
eta_px:Tensor = torch.tensor([value for (key, value), kind in zip(eta_px.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
eta_qy:Tensor = torch.tensor([value for (key, value), kind in zip(eta_qy.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
eta_py:Tensor = torch.tensor([value for (key, value), kind in zip(eta_py.items(), kinds.values()) if kind == 'MONI'], dtype=torch.float64)
positions = select(columns, 's', keep=False).items()
positions = [value for (key, value), kind in zip(positions, kinds.values()) if kind == 'MONI']
[4]:
# Build and setup lattice
# Load ELEGANT table
path = Path('ic.lte')
data = load_lattice(path)
# Build ELEGANT table
ring:Line = build('RING', 'ELEGANT', data)
ring.flatten()
# Merge drifts
ring.merge()
# Split BPMs
ring.split((None, ['BPM'], None, None))
# Roll lattice start
ring.roll(1)
# Set linear dipoles
for element in ring:
if element.__class__.__name__ == 'Dipole':
element.linear = True
# Split lattice into lines by BPMs
ring.splice()
# Set number of elements of different kinds
nb = ring.describe['BPM']
nq = ring.describe['Quadrupole']
ns = ring.describe['Sextupole']
[5]:
# Compare tunes
nuqx, nuqy = tune(ring, [], alignment=False, matched=True)
print(torch.allclose(nu_qx, nuqx))
print(torch.allclose(nu_qy, nuqy))
True
True
[6]:
# Compare twiss
aqx, bqx, aqy, bqy = twiss(ring, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
print(torch.allclose(a_qx, aqx))
print(torch.allclose(b_qx, bqx))
print(torch.allclose(a_qy, aqy))
print(torch.allclose(b_qy, bqy))
True
True
True
True
[7]:
# Compare dispersion
guess = torch.tensor(4*[0.0], dtype=torch.float64)
etaqx, etapx, etaqy, etapy = dispersion(ring, guess, [], alignment=False)
print(torch.allclose(eta_qx, etaqx))
print(torch.allclose(eta_px, etapx))
print(torch.allclose(eta_qy, etapy))
print(torch.allclose(eta_py, etaqy))
True
True
True
True
[8]:
# Define parametric normalized dispersion
def normalized_dispersion(kn, line=ring):
guess = torch.tensor(4*[0.0], dtype=torch.float64)
etaqx, _, etaqy, _ = dispersion(line, guess, [kn], ('kn', ['Quadrupole'], None, None), alignment=False)
_, bqx, _, bqy = twiss(line, [kn], ('kn', ['Quadrupole'], None, None), alignment=False, matched=True, advance=True, full=False, convert=True).T
return torch.stack([etaqx/bqx.sqrt(), etaqy/bqy.sqrt()])
[9]:
# Compute twiss and normalized dispersion derivatives
kn = torch.zeros(nq, dtype=torch.float64)
dtwiss_dkn = torch.func.jacrev(lambda kn: twiss(ring, [kn], ('kn', ['Quadrupole'], None, None), alignment=False, matched=True, advance=True, full=False, convert=True))(kn)
dnormal_dkn = torch.func.jacrev(normalized_dispersion)(kn).swapaxes(0, 1)
print(dtwiss_dkn.shape)
print(dnormal_dkn.shape)
torch.Size([16, 4, 28])
torch.Size([16, 2, 28])
[10]:
# Set lattice with focusing errors (no coupling)
error:Line = ring.clone()
nq = error.describe['Quadrupole']
error_kn = 0.1*torch.randn(nq, dtype=torch.float64)
index = 0
label = ''
for line in error.sequence:
for element in line:
if element.__class__.__name__ == 'Quadrupole':
if label != element.name:
index +=1
label = element.name
element.kn = (element.kn + error_kn[index - 1]).item()
[11]:
# Compute twiss and plot beta beating
ax_model, bx_model, ay_model, by_model = twiss(ring, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
ax_error, bx_error, ay_error, by_error = twiss(error, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
# Compare twiss
print((ax_model - ax_error).norm())
print((bx_model - bx_error).norm())
print((ay_model - ay_error).norm())
print((by_model - by_error).norm())
print()
# Plot beta beating
plt.figure(figsize=(16, 2))
plt.plot(ring.locations().cpu().numpy(), 100*((bx_model - bx_error)/bx_model).cpu().numpy(), color='red', alpha=0.75, marker='o')
plt.plot(ring.locations().cpu().numpy(), 100*((by_model - by_error)/by_model).cpu().numpy(), color='blue', alpha=0.75, marker='o')
plt.xticks(ticks=positions, labels=['BPM05', 'BPM07', 'BPM08', 'BPM09', 'BPM10', 'BPM11', 'BPM12', 'BPM13', 'BPM14', 'BPM15', 'BPM16', 'BPM17', 'BPM01', 'BPM02', 'BPM03', 'BPM04'])
plt.tight_layout()
plt.show()
tensor(2.4390, dtype=torch.float64)
tensor(1.4076, dtype=torch.float64)
tensor(2.3071, dtype=torch.float64)
tensor(1.4153, dtype=torch.float64)
[12]:
# Compute and plot normalized dispersion
netaqx_model, netaqy_model = normalized_dispersion(kn, ring)
netaqx_error, netaqy_error = normalized_dispersion(kn, error)
print((netaqx_model - netaqx_error).norm())
print((netaqy_model - netaqy_error).norm())
print()
plt.figure(figsize=(16, 2))
plt.plot(ring.locations().cpu().numpy(), (netaqx_model - netaqx_error).cpu().numpy(), color='red', alpha=0.75, marker='o')
plt.plot(ring.locations().cpu().numpy(), (netaqy_model - netaqy_error).cpu().numpy(), color='blue', alpha=0.75, marker='o')
plt.xticks(ticks=positions, labels=['BPM05', 'BPM07', 'BPM08', 'BPM09', 'BPM10', 'BPM11', 'BPM12', 'BPM13', 'BPM14', 'BPM15', 'BPM16', 'BPM17', 'BPM01', 'BPM02', 'BPM03', 'BPM04'])
plt.tight_layout()
plt.show()
tensor(0.0782, dtype=torch.float64)
tensor(0., dtype=torch.float64)
[13]:
# Perform correction (model to experiment)
# Set response matrix
matrix = torch.vstack([dtwiss_dkn.reshape(-1, nq), dnormal_dkn.reshape(-1, nq)])
# Set target twiss parameters
twiss_error = twiss(error, [], alignment=False, matched=True, advance=True, full=False, convert=True)
# Set target normalized dispesion
normal_error = normalized_dispersion(0*kn, error)
# Set learning rate
lr = 0.1
# Set initial values
kn = torch.zeros_like(error_kn)
# Fit
for _ in range(64):
twiss_model = twiss(ring, [kn], ('kn', ['Quadrupole'], None, None), alignment=False, matched=True, advance=True, full=False, convert=True)
normal_model = normalized_dispersion(kn, ring)
dkn = - lr*torch.linalg.lstsq(matrix, torch.cat([(twiss_model - twiss_error).flatten(), (normal_model - normal_error).flatten()]), driver='gelsd').solution
kn += dkn
print(torch.stack([(twiss_model - twiss_error).norm(), (normal_model - normal_error).norm()]))
# Plot final quadrupole settings
plt.figure(figsize=(16, 2))
plt.bar(range(len(error_kn)), error_kn.cpu().numpy(), color='red', alpha=0.75, width=1)
plt.bar(range(len(kn)), +kn.cpu().numpy(), color='blue', alpha=0.75, width=0.75)
plt.tight_layout()
plt.show()
tensor([3.9058, 0.0782], dtype=torch.float64)
tensor([3.5081, 0.0731], dtype=torch.float64)
tensor([3.1346, 0.0685], dtype=torch.float64)
tensor([2.7876, 0.0644], dtype=torch.float64)
tensor([2.4690, 0.0608], dtype=torch.float64)
tensor([2.1800, 0.0576], dtype=torch.float64)
tensor([1.9211, 0.0548], dtype=torch.float64)
tensor([1.6919, 0.0523], dtype=torch.float64)
tensor([1.4908, 0.0501], dtype=torch.float64)
tensor([1.3159, 0.0481], dtype=torch.float64)
tensor([1.1645, 0.0462], dtype=torch.float64)
tensor([1.0341, 0.0445], dtype=torch.float64)
tensor([0.9219, 0.0429], dtype=torch.float64)
tensor([0.8253, 0.0414], dtype=torch.float64)
tensor([0.7420, 0.0400], dtype=torch.float64)
tensor([0.6700, 0.0386], dtype=torch.float64)
tensor([0.6076, 0.0372], dtype=torch.float64)
tensor([0.5531, 0.0359], dtype=torch.float64)
tensor([0.5054, 0.0346], dtype=torch.float64)
tensor([0.4634, 0.0334], dtype=torch.float64)
tensor([0.4263, 0.0322], dtype=torch.float64)
tensor([0.3932, 0.0310], dtype=torch.float64)
tensor([0.3636, 0.0299], dtype=torch.float64)
tensor([0.3371, 0.0287], dtype=torch.float64)
tensor([0.3131, 0.0277], dtype=torch.float64)
tensor([0.2914, 0.0266], dtype=torch.float64)
tensor([0.2716, 0.0256], dtype=torch.float64)
tensor([0.2535, 0.0246], dtype=torch.float64)
tensor([0.2370, 0.0236], dtype=torch.float64)
tensor([0.2217, 0.0227], dtype=torch.float64)
tensor([0.2077, 0.0218], dtype=torch.float64)
tensor([0.1948, 0.0210], dtype=torch.float64)
tensor([0.1828, 0.0201], dtype=torch.float64)
tensor([0.1716, 0.0193], dtype=torch.float64)
tensor([0.1613, 0.0185], dtype=torch.float64)
tensor([0.1517, 0.0178], dtype=torch.float64)
tensor([0.1427, 0.0171], dtype=torch.float64)
tensor([0.1343, 0.0164], dtype=torch.float64)
tensor([0.1265, 0.0157], dtype=torch.float64)
tensor([0.1192, 0.0151], dtype=torch.float64)
tensor([0.1123, 0.0144], dtype=torch.float64)
tensor([0.1059, 0.0138], dtype=torch.float64)
tensor([0.0999, 0.0133], dtype=torch.float64)
tensor([0.0942, 0.0127], dtype=torch.float64)
tensor([0.0889, 0.0122], dtype=torch.float64)
tensor([0.0839, 0.0117], dtype=torch.float64)
tensor([0.0792, 0.0112], dtype=torch.float64)
tensor([0.0748, 0.0107], dtype=torch.float64)
tensor([0.0706, 0.0102], dtype=torch.float64)
tensor([0.0667, 0.0098], dtype=torch.float64)
tensor([0.0630, 0.0094], dtype=torch.float64)
tensor([0.0595, 0.0090], dtype=torch.float64)
tensor([0.0563, 0.0086], dtype=torch.float64)
tensor([0.0532, 0.0082], dtype=torch.float64)
tensor([0.0503, 0.0079], dtype=torch.float64)
tensor([0.0475, 0.0075], dtype=torch.float64)
tensor([0.0449, 0.0072], dtype=torch.float64)
tensor([0.0425, 0.0069], dtype=torch.float64)
tensor([0.0402, 0.0066], dtype=torch.float64)
tensor([0.0380, 0.0063], dtype=torch.float64)
tensor([0.0359, 0.0060], dtype=torch.float64)
tensor([0.0340, 0.0058], dtype=torch.float64)
tensor([0.0322, 0.0055], dtype=torch.float64)
tensor([0.0304, 0.0053], dtype=torch.float64)
[14]:
# Apply corrections
lattice:Line = error.clone()
index = 0
label = ''
for line in lattice.sequence:
for element in line:
if element.__class__.__name__ == 'Quadrupole':
if label != element.name:
index +=1
label = element.name
element.kn = (element.kn - kn[index - 1]).item()
[15]:
# Compute twiss and plot beta beating
ax_model, bx_model, ay_model, by_model = twiss(ring, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
ax_error, bx_error, ay_error, by_error = twiss(error, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
ax_final, bx_final, ay_final, by_final = twiss(lattice, [], alignment=False, matched=True, advance=True, full=False, convert=True).T
# Plot beta beating
plt.figure(figsize=(16, 2))
plt.plot(ring.locations().cpu().numpy(), 100*((bx_model - bx_error)/bx_model).cpu().numpy(), color='red', alpha=0.75, marker='o')
plt.plot(ring.locations().cpu().numpy(), 100*((by_model - by_error)/by_model).cpu().numpy(), color='blue', alpha=0.75, marker='o')
plt.plot(ring.locations().cpu().numpy(), 100*((bx_model - bx_final)/bx_model).cpu().numpy(), color='red', alpha=0.75, marker='x')
plt.plot(ring.locations().cpu().numpy(), 100*((by_model - by_final)/by_model).cpu().numpy(), color='blue', alpha=0.75, marker='x')
plt.xticks(ticks=positions, labels=['BPM05', 'BPM07', 'BPM08', 'BPM09', 'BPM10', 'BPM11', 'BPM12', 'BPM13', 'BPM14', 'BPM15', 'BPM16', 'BPM17', 'BPM01', 'BPM02', 'BPM03', 'BPM04'])
plt.tight_layout()
plt.show()