ELETTRA-05: ID linear optics distortion
[1]:
# In this example effects of an ID (APPLE-II device (40*100mm) represented by a linear 4x4 symplectic matrix) are presented
# ID is inserted replacing a selected marker as a thin insertion
# The following effects on the linear optics are investigated:
# -- Tune shifts
# -- Dispersion
# -- Beta beating
# -- Coupling (minimal tune distance)
# ID is modeled as a linear element
# Corresponding transport matrix is M = exp(S A) exp(dp S B)
# Additionaly, effects of LPU are also presented (98*46mm)
[2]:
# Import
import torch
from torch import Tensor
from pathlib import Path
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
matplotlib.rcParams['text.usetex'] = True
from model.library.element import Element
from model.library.line import Line
from model.library.quadrupole import Quadrupole
from model.library.matrix import Matrix
from model.command.external import load_lattice
from model.command.build import build
from model.command.tune import tune
from model.command.orbit import dispersion
from model.command.twiss import twiss
from model.command.advance import advance
from model.command.coupling import coupling
[3]:
# Set data type and device
Element.dtype = dtype = torch.float64
Element.device = device = torch.device('cpu')
[4]:
# Load lattice (ELEGANT table)
# Note, lattice is allowed to have repeated elements
path = Path('elettra.lte')
data = load_lattice(path)
[5]:
# Build and setup lattice
ring:Line = build('RING', 'ELEGANT', data)
# Flatten sublines
ring.flatten()
# Remove all marker elements but the ones starting with MLL (long straight section centers)
ring.remove_group(pattern=r'^(?!MLL_).*', kinds=['Marker'])
# Replace all sextupoles with quadrupoles
def factory(element:Element) -> None:
table = element.serialize
table.pop('ms', None)
return Quadrupole(**table)
ring.replace_group(pattern=r'', factory=factory, kinds=['Sextupole'])
# Set linear dipoles
def apply(element:Element) -> None:
element.linear = True
ring.apply(apply, kinds=['Dipole'])
# Merge drifts
ring.merge()
# Change lattice start
ring.start = "BPM_S01_01"
# Split BPMs
ring.split((None, ['BPM'], None, None))
# Roll lattice
ring.roll(1)
# Splice lattice
ring.splice()
# Describe
ring.describe
[5]:
{'BPM': 168, 'Drift': 708, 'Dipole': 156, 'Quadrupole': 360, 'Marker': 12}
[6]:
# Compute tunes (fractional part)
nux, nuy = tune(ring, [], matched=True, limit=1)
[7]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx, etapx, etaqy, etapy = dispersion(ring, orbit, [], limit=1)
[8]:
# Compute twiss parameters
ax, bx, ay, by = twiss(ring, [], matched=True, advance=True, full=False).T
[9]:
# Compute phase advances
mux, muy = advance(ring, [], alignment=False, matched=True).T
[10]:
# Compute coupling
c = coupling(ring, [])
[11]:
# Define ID model (single kick)
# Note, only the flattened triangular part of the A and B matrices is passed
A = torch.tensor([[-0.033664857671742154, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0585058830814459, 0.0],
[0.0, 0.0, 0.0, 0.0]], dtype=dtype)
ID = Matrix('ID',
length=0.0,
A=A[torch.triu(torch.ones_like(A, dtype=torch.bool))].tolist())
[12]:
# Insert ID into the existing lattice
# This will replace the target marker
ring.flatten()
ring.insert(ID, 'MLL_S01', position=0.0)
ring.splice()
# Describe
ring.describe
[12]:
{'BPM': 168,
'Drift': 708,
'Dipole': 156,
'Quadrupole': 360,
'Matrix': 1,
'Marker': 11}
[13]:
# Compute tunes (fractional part)
nux_id, nuy_id = tune(ring, [], matched=True, limit=1)
[14]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_id, etapx_id, etaqy_id, etapy_id = dispersion(ring, orbit, [], limit=1)
[15]:
# Compute twiss parameters
ax_id, bx_id, ay_id, by_id = twiss(ring, [], matched=True, advance=True, full=False).T
[16]:
# Compute phase advances
mux_id, muy_id = advance(ring, [], alignment=False, matched=True).T
[17]:
# Compute coupling
c_id = coupling(ring, [])
[18]:
# Tune shifts
print((nux - nux_id))
print((nuy - nuy_id))
tensor(0.0247, dtype=torch.float64)
tensor(-0.0075, dtype=torch.float64)
[19]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
tensor(0., dtype=torch.float64)
tensor(0., dtype=torch.float64)
[20]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[21]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
tensor(11.3919, dtype=torch.float64)
tensor(4.0971, dtype=torch.float64)
[22]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
tensor(8.6388, dtype=torch.float64)
tensor(3.9969, dtype=torch.float64)
[23]:
# Define ID model (one kick for each period)
# Note, only the flattened triangular part of the A and B matrices is passed
A = torch.tensor([[-0.034441907232402175, 0.0, 0.0, 0.0],
[0.0, -0.04458009513208418, 0.0, 0.0],
[0.0, 0.0, 0.056279356423643276, 0.0],
[0.0, 0.0, 0.0, 0.08037110220505986]], dtype=dtype)
ID = Matrix('ID',
length=0.0,
A=A[torch.triu(torch.ones_like(A, dtype=torch.bool))].tolist())
[24]:
# Replace ID
ring.flatten()
ring.replace("ID", ID)
ring.splice()
ring.describe
[24]:
{'BPM': 168,
'Drift': 708,
'Dipole': 156,
'Quadrupole': 360,
'Matrix': 1,
'Marker': 11}
[25]:
# Compute tunes (fractional part)
nux_id, nuy_id = tune(ring, [], matched=True, limit=1)
[26]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_id, etapx_id, etaqy_id, etapy_id = dispersion(ring, orbit, [], limit=1)
[27]:
# Compute twiss parameters
ax_id, bx_id, ay_id, by_id = twiss(ring, [], matched=True, advance=True, full=False).T
[28]:
# Compute phase advances
mux_id, muy_id = advance(ring, [], alignment=False, matched=True).T
[29]:
# Compute coupling
c_id = coupling(ring, [])
[30]:
# Tune shifts
print((nux - nux_id))
print((nuy - nuy_id))
tensor(0.0257, dtype=torch.float64)
tensor(-0.0112, dtype=torch.float64)
[31]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
tensor(0., dtype=torch.float64)
tensor(0., dtype=torch.float64)
[32]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[33]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
tensor(11.4721, dtype=torch.float64)
tensor(1.8233, dtype=torch.float64)
[34]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
tensor(8.6991, dtype=torch.float64)
tensor(1.8072, dtype=torch.float64)
[35]:
# Define ID model (full model with leading order chormatic effects)
# Note, only the flattened triangular part of the A and B matrices is passed
A = torch.tensor([[-0.03484222052711237, 1.0272120741819959E-7, -4.698931299341201E-9, 0.0015923185492594811],
[1.0272120579834892E-7, -0.046082787920135176, 0.0017792061173117564, 3.3551298301095784E-8],
[-4.6989312853101E-9, 0.0017792061173117072, 0.056853750760983084, -1.5929605363332683E-7],
[0.0015923185492594336, 3.3551298348653296E-8, -1.5929605261642905E-7, 0.08311631737263032]], dtype=dtype)
B = torch.tensor([[0.03649353186115209, 0.0015448347221877217, 0.00002719892025520868, -0.0033681183134964482],
[0.0015448347221877217, 0.13683886657005795, -0.0033198692682377406, 0.00006140578258682469],
[0.00002719892025520868, -0.0033198692682377406, -0.05260095308967722, 0.005019907688182885],
[-0.0033681183134964482, 0.00006140578258682469, 0.005019907688182885, -0.2531573249456863]], dtype=dtype)
ID = Matrix('ID',
length=0.0,
A=A[torch.triu(torch.ones_like(A, dtype=torch.bool))].tolist(),
B=B[torch.triu(torch.ones_like(B, dtype=torch.bool))].tolist())
[36]:
# Replace ID
ring.flatten()
ring.replace("ID", ID)
ring.splice()
ring.describe
[36]:
{'BPM': 168,
'Drift': 708,
'Dipole': 156,
'Quadrupole': 360,
'Matrix': 1,
'Marker': 11}
[37]:
# Compute tunes (fractional part)
nux_id, nuy_id = tune(ring, [], matched=True, limit=1)
[38]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_id, etapx_id, etaqy_id, etapy_id = dispersion(ring, orbit, [], limit=1)
[39]:
# Compute twiss parameters
ax_id, bx_id, ay_id, by_id = twiss(ring, [], matched=True, advance=True, full=False).T
[40]:
# Compute phase advances
mux_id, muy_id = advance(ring, [], alignment=False, matched=True).T
[41]:
# Compute coupling
c_id = coupling(ring, [])
[42]:
# Tune shifts
print((nux - nux_id))
print((nuy - nuy_id))
tensor(0.0260, dtype=torch.float64)
tensor(-0.0114, dtype=torch.float64)
[43]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
tensor(0., dtype=torch.float64)
tensor(0.0004, dtype=torch.float64)
[44]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[45]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
tensor(11.5994, dtype=torch.float64)
tensor(1.7916, dtype=torch.float64)
[46]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
tensor(8.7941, dtype=torch.float64)
tensor(1.7778, dtype=torch.float64)
[47]:
# Beta-beating and dispersion
bx_ref_bb = 100.0*(bx - bx_id) / bx
by_ref_bb = 100.0*(by - by_id) / by
def rms(x):
return (x**2).mean().sqrt()
rms_x_ref = rms(bx_ref_bb).item()
ptp_x_ref = (bx_ref_bb.max() - bx_ref_bb.min()).item()
rms_y_ref = rms(by_ref_bb).item()
ptp_y_ref = (by_ref_bb.max() - by_ref_bb.min()).item()
s = ring.locations().cpu().numpy()
bx_ref_np = bx_ref_bb.cpu().numpy()
by_ref_np = by_ref_bb.cpu().numpy()
etax_ref = etaqx - etaqx_id
etay_ref = etaqy - etaqy_id
rms_etax_ref = rms(etax_ref).item()
ptp_etax_ref = (etax_ref.max() - etax_ref.min()).item()
rms_etay_ref = rms(etay_ref).item()
ptp_etay_ref = (etay_ref.max() - etay_ref.min()).item()
etax_ref_np = etax_ref.cpu().numpy()
etay_ref_np = etay_ref.cpu().numpy()
fig, (ax, ay) = plt.subplots(
2, 1, figsize=(16, 10),
sharex=True,
gridspec_kw={'hspace': 0.3}
)
ax.errorbar(s, bx_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'$\beta_x$')
ax.errorbar(s, by_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'$\beta_y$')
ax.set_xlabel('s [m]', fontsize=18)
ax.set_ylabel(r'$\Delta \beta / \beta$ [\%]', fontsize=18)
ax.tick_params(width=2, labelsize=16)
ax.tick_params(axis='x', length=8, direction='in')
ax.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_x_ref:05.2f}\% \quad RMS$_y$={rms_y_ref:05.2f}\% \quad '
rf'PTP$_x$={ptp_x_ref:05.2f}\% \quad PTP$_y$={ptp_y_ref:05.2f}\% \quad '
rf'$\Delta \nu_x$={(lambda x: '-' if x < 0 else '~')(nux - nux_id)}{(nux - nux_id).abs().item():.4f} \quad $\Delta \nu_y$={(lambda x: '-' if x < 0 else '~')(nuy - nuy_id)}{(nuy - nuy_id).abs().item():.4f}'
rf'\quad C={c_id.item():.6f}'
)
ax.text(0.0, 1.10, title, transform=ax.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
ax.legend(loc='upper right', frameon=False, fontsize=14, ncol=4)
ay.errorbar(s, etax_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'$\eta_x$')
ay.errorbar(s, etay_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'$\eta_y$')
ay.set_xlabel('s [m]', fontsize=18)
ay.set_ylabel(r'$\Delta \eta$ [m]', fontsize=18)
ay.tick_params(width=2, labelsize=16)
ay.tick_params(axis='x', length=8, direction='in')
ay.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_etax_ref:.4E} m \quad RMS$_y$={rms_etay_ref:.4E} m \quad '
rf'PTP$_x$={ptp_etax_ref:.4E} m \quad PTP$_y$={ptp_etay_ref:.4E} m \quad '
)
ay.text(0.0, 1.125, title, transform=ay.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
plt.setp(ax.spines.values(), linewidth=2.0)
plt.setp(ay.spines.values(), linewidth=2.0)
plt.show()
[48]:
# Define ID model (LPU)
A = torch.tensor([[-0.00012383337794002073, -4.660270490330217E-11, 6.376863691496814E-10, 2.7230065924765254E-9],
[-4.660394652563561E-11, -0.00023205060950586665, -1.3479277794464672E-9, -2.355844533297301E-9],
[6.376863692762265E-10, -1.347927657735391E-9, 0.03660488622324795, 5.772998189350976E-9],
[2.7230065927230765E-9, -2.3558445782246365E-9, 5.772998640180359E-9, 0.06475766873116935]], dtype=dtype)
B = torch.tensor([[0.00012378599381951955, -1.6869692601073327E-7, 7.640630142947167E-8, -2.0548228907169046E-7],
[-1.6869692601073327E-7, 0.0006954279711404285, 1.3864566360308503E-7, -5.549940163648357E-7],
[7.640630142947167E-8, 1.3864566360308503E-7, -0.034632609324692906, 0.0024749659452940626],
[-2.0548228907169046E-7, -5.549940163648357E-7, 0.0024749659452940626, -0.19648005917364772]], dtype=dtype)
ID = Matrix('ID',
length=0.0,
A=A[torch.triu(torch.ones_like(A, dtype=torch.bool))].tolist(),
B=B[torch.triu(torch.ones_like(B, dtype=torch.bool))].tolist())
[49]:
# Replace ID
ring.flatten()
ring.replace("ID", ID)
ring.splice()
ring.describe
[49]:
{'BPM': 168,
'Drift': 708,
'Dipole': 156,
'Quadrupole': 360,
'Matrix': 1,
'Marker': 11}
[50]:
# Compute tunes (fractional part)
nux_id, nuy_id = tune(ring, [], matched=True, limit=1)
[51]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_id, etapx_id, etaqy_id, etapy_id = dispersion(ring, orbit, [], limit=1)
[52]:
# Compute twiss parameters
ax_id, bx_id, ay_id, by_id = twiss(ring, [], matched=True, advance=True, full=False).T
[53]:
# Compute phase advances
mux_id, muy_id = advance(ring, [], alignment=False, matched=True).T
[54]:
# Compute coupling
c_id = coupling(ring, [])
[55]:
# Tune shifts
print((nux - nux_id))
print((nuy - nuy_id))
tensor(9.4733e-05, dtype=torch.float64)
tensor(-0.0079, dtype=torch.float64)
[56]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
tensor(0., dtype=torch.float64)
tensor(1.1869e-09, dtype=torch.float64)
[57]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[58]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
tensor(0.0423, dtype=torch.float64)
tensor(0.8755, dtype=torch.float64)
[59]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
tensor(0.0323, dtype=torch.float64)
tensor(0.8822, dtype=torch.float64)
[60]:
# Beta-beating and dispersion
bx_ref_bb = 100.0*(bx - bx_id) / bx
by_ref_bb = 100.0*(by - by_id) / by
def rms(x):
return (x**2).mean().sqrt()
rms_x_ref = rms(bx_ref_bb).item()
ptp_x_ref = (bx_ref_bb.max() - bx_ref_bb.min()).item()
rms_y_ref = rms(by_ref_bb).item()
ptp_y_ref = (by_ref_bb.max() - by_ref_bb.min()).item()
s = ring.locations().cpu().numpy()
bx_ref_np = bx_ref_bb.cpu().numpy()
by_ref_np = by_ref_bb.cpu().numpy()
etax_ref = etaqx - etaqx_id
etay_ref = etaqy - etaqy_id
rms_etax_ref = rms(etax_ref).item()
ptp_etax_ref = (etax_ref.max() - etax_ref.min()).item()
rms_etay_ref = rms(etay_ref).item()
ptp_etay_ref = (etay_ref.max() - etay_ref.min()).item()
etax_ref_np = etax_ref.cpu().numpy()
etay_ref_np = etay_ref.cpu().numpy()
fig, (ax, ay) = plt.subplots(
2, 1, figsize=(16, 10),
sharex=True,
gridspec_kw={'hspace': 0.3}
)
ax.errorbar(s, bx_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'$\beta_x$')
ax.errorbar(s, by_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'$\beta_y$')
ax.set_xlabel('s [m]', fontsize=18)
ax.set_ylabel(r'$\Delta \beta / \beta$ [\%]', fontsize=18)
ax.tick_params(width=2, labelsize=16)
ax.tick_params(axis='x', length=8, direction='in')
ax.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_x_ref:05.2f}\% \quad RMS$_y$={rms_y_ref:05.2f}\% \quad '
rf'PTP$_x$={ptp_x_ref:05.2f}\% \quad PTP$_y$={ptp_y_ref:05.2f}\% \quad '
rf'$\Delta \nu_x$={(lambda x: '-' if x < 0 else '~')(nux - nux_id)}{(nux - nux_id).abs().item():.4f} \quad $\Delta \nu_y$={(lambda x: '-' if x < 0 else '~')(nuy - nuy_id)}{(nuy - nuy_id).abs().item():.4f}'
rf'\quad C={c_id.item():.6f}'
)
ax.text(0.0, 1.10, title, transform=ax.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
ax.legend(loc='upper right', frameon=False, fontsize=14, ncol=4)
ay.errorbar(s, etax_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'$\eta_x$')
ay.errorbar(s, etay_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'$\eta_y$')
ay.set_xlabel('s [m]', fontsize=18)
ay.set_ylabel(r'$\Delta \eta$ [m]', fontsize=18)
ay.tick_params(width=2, labelsize=16)
ay.tick_params(axis='x', length=8, direction='in')
ay.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_etax_ref:.4E} m \quad RMS$_y$={rms_etay_ref:.4E} m \quad '
rf'PTP$_x$={ptp_etax_ref:.4E} m \quad PTP$_y$={ptp_etay_ref:.4E} m \quad '
)
ay.text(0.0, 1.125, title, transform=ay.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
plt.setp(ax.spines.values(), linewidth=2.0)
plt.setp(ay.spines.values(), linewidth=2.0)
plt.show()