ELETTRA-22: ID model fit & compensation (tunes, twiss parameters and dispersion)
[1]:
# In this example an ID model is fitted from measured tunes, twiss and dispersion (any other set can be used)
# In principal, given a model to be fitted and a measured target vector, any optimizer can be employed
# Here LBFGS optimizer usage for ID model fitting is demonstrated
# But the final fitted model is obtained using response matrix (model jacobian)
# Using the fitted model, corrections are obtained and applied to initial model
# Note, this doesn't require actual measurements and can use any optimization loop
# Only when the final corrections are computed and employed, the measurements can be performed to assert the correction quality
[2]:
# Import
import torch
from torch import Tensor
from pathlib import Path
import matplotlib
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
matplotlib.rcParams['text.usetex'] = True
from model.library.element import Element
from model.library.line import Line
from model.library.quadrupole import Quadrupole
from model.library.matrix import Matrix
from model.command.external import load_lattice
from model.command.build import build
from model.command.tune import tune
from model.command.orbit import dispersion
from model.command.twiss import twiss
from model.command.advance import advance
from model.command.coupling import coupling
from model.command.wrapper import Wrapper
from model.command.wrapper import forward
from model.command.wrapper import inverse
from model.command.wrapper import normalize
[3]:
# Set data type and device
Element.dtype = dtype = torch.float64
Element.device = device = torch.device('cpu')
[4]:
# Load lattice (ELEGANT table)
# Note, lattice is allowed to have repeated elements
path = Path('elettra.lte')
data = load_lattice(path)
[5]:
# Build and setup lattice
ring:Line = build('RING', 'ELEGANT', data)
# Flatten sublines
ring.flatten()
# Remove all marker elements but the ones starting with MLL (long straight section centers)
ring.remove_group(pattern=r'^(?!MLL_).*', kinds=['Marker'])
# Replace all sextupoles with quadrupoles
def factory(element:Element) -> None:
table = element.serialize
table.pop('ms', None)
return Quadrupole(**table)
ring.replace_group(pattern=r'', factory=factory, kinds=['Sextupole'])
# Set linear dipoles
def apply(element:Element) -> None:
element.linear = True
ring.apply(apply, kinds=['Dipole'])
# Merge drifts
ring.merge()
# Change lattice start
ring.start = "BPM_S01_01"
# Split BPMs
ring.split((None, ['BPM'], None, None))
# Roll lattice
ring.roll(1)
# Splice lattice
ring.splice()
# Describe
ring.describe
[5]:
{'BPM': 168, 'Drift': 708, 'Dipole': 156, 'Quadrupole': 360, 'Marker': 12}
[6]:
# Compute tunes (fractional part)
nux, nuy = tune(ring, [], matched=True, limit=1)
[7]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx, etapx, etaqy, etapy = dispersion(ring, orbit, [], limit=1)
[8]:
# Compute twiss parameters
ax, bx, ay, by = twiss(ring, [], matched=True, advance=True, full=False).T
[9]:
# Compute phase advances
mux, muy = advance(ring, [], alignment=False, matched=True).T
[10]:
# Compute coupling
c = coupling(ring, [])
[11]:
# Quadrupole names for global tune correction
QF = [f'QF_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
QD = [f'QD_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
[12]:
# Several local knobs can be used to correct ID effects
# Normal quadrupole correctors
nkn = ['OCT_S01_02', 'QF_S01_02', 'QD_S01_02', 'QD_S01_03', 'QF_S01_03', 'OCT_S01_03']
# Skew quadrupole correctors
nks = ['SD_S01_05', 'SH_S01_02', 'SH_S01_03', 'SD_S01_06']
[13]:
# Define knobs to magnets mixing matrices (symmetric correction)
Sn = torch.tensor([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 0.0]], dtype=dtype)
print(Sn)
print()
Ss = torch.tensor([[+1.0, 0.0], [0.0, +1.0], [0.0, -1.0], [-1.0, 0.0]], dtype=dtype)
print(Ss)
print()
tensor([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.],
[0., 0., 1.],
[0., 1., 0.],
[1., 0., 0.]], dtype=torch.float64)
tensor([[ 1., 0.],
[ 0., 1.],
[ 0., -1.],
[-1., 0.]], dtype=torch.float64)
[14]:
# Define ID model
# Note, only the flattened triangular part of the A and B matrices will be passed
A = torch.tensor([[-0.03484222052711237, 1.0272120741819959E-7, -4.698931299341201E-9, 0.0015923185492594811],
[1.0272120579834892E-7, -0.046082787920135176, 0.0017792061173117564, 3.3551298301095784E-8],
[-4.6989312853101E-9, 0.0017792061173117072, 0.056853750760983084, -1.5929605363332683E-7],
[0.0015923185492594336, 3.3551298348653296E-8, -1.5929605261642905E-7, 0.08311631737263032]], dtype=dtype)
B = torch.tensor([[0.03649353186115209, 0.0015448347221877217, 0.00002719892025520868, -0.0033681183134964482],
[0.0015448347221877217, 0.13683886657005795, -0.0033198692682377406, 0.00006140578258682469],
[0.00002719892025520868, -0.0033198692682377406, -0.05260095308967722, 0.005019907688182885],
[-0.0033681183134964482, 0.00006140578258682469, 0.005019907688182885, -0.2531573249456863]], dtype=dtype)
A = A[torch.triu(torch.ones_like(A, dtype=torch.bool))].tolist()
B = B[torch.triu(torch.ones_like(B, dtype=torch.bool))].tolist()
# Empty ID
X = Matrix('X', length=0.0)
# If A and/or B matrix elements are not passed, ID acts like an identity element
state = torch.tensor(4*[0.0], dtype=dtype)
print(torch.func.jacrev(X)(state))
tensor([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.],
[0., 0., 0., 1.]], dtype=torch.float64)
[15]:
# Insert empty ID into the existing lattice
# This will replace the target marker
error = ring.clone()
error.flatten()
error.insert(X, 'MLL_S01', position=0.0)
error.splice()
# Describe
error.describe
[15]:
{'BPM': 168,
'Drift': 708,
'Dipole': 156,
'Quadrupole': 360,
'Matrix': 1,
'Marker': 11}
[16]:
# Compute ID response matrix
def observable(knobs):
a11, a12, a13, a14, a22, a23, a24, a33, a34, a44 = knobs.reshape(-1, 1)
groups = (
('a11', None, ['X'], None),
('a12', None, ['X'], None),
('a13', None, ['X'], None),
('a14', None, ['X'], None),
('a22', None, ['X'], None),
('a23', None, ['X'], None),
('a24', None, ['X'], None),
('a33', None, ['X'], None),
('a34', None, ['X'], None),
('a44', None, ['X'], None)
)
orbit = torch.tensor(4*[0.0], dtype=dtype)
nux, nuy = tune(error, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups, matched=True)
_, bx, _, by = twiss(error, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups, matched=True, advance=True, full=False).T
etax, _, etay, _ = dispersion(error, orbit, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups)
return torch.cat([nux.unsqueeze(-1), nuy.unsqueeze(-1), bx, by, etax, etay])
knobs = torch.tensor(10*[0.0], dtype=dtype)
print((matrix := torch.func.jacfwd(observable)(knobs)).shape)
torch.Size([674, 10])
[17]:
# Compute responce matrix rank
# Note, the responce matrix rank is not full
print(torch.linalg.matrix_rank(matrix))
tensor(8)
[18]:
# Activate ID
X.A = A
X.B = B
[19]:
# Compute tunes (fractional part)
nux_id, nuy_id = tune(error, [], matched=True, limit=1)
[20]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_id, etapx_id, etaqy_id, etapy_id = dispersion(error, orbit, [], limit=1)
[21]:
# Compute twiss parameters
ax_id, bx_id, ay_id, by_id = twiss(error, [], matched=True, advance=True, full=False).T
[22]:
# Compute phase advances
mux_id, muy_id = advance(error, [], alignment=False, matched=True).T
[23]:
# Compute coupling
c_id = coupling(error, [])
[24]:
# Tune shifts
print((nux - nux_id))
print((nuy - nuy_id))
tensor(0.0260, dtype=torch.float64)
tensor(-0.0114, dtype=torch.float64)
[25]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
tensor(0., dtype=torch.float64)
tensor(0.0004, dtype=torch.float64)
[26]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[27]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
tensor(11.5994, dtype=torch.float64)
tensor(1.7916, dtype=torch.float64)
[28]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
tensor(8.7941, dtype=torch.float64)
tensor(1.7778, dtype=torch.float64)
[29]:
# Set observable vector (with ID)
orbit = torch.tensor(4*[0.0], dtype=dtype)
nux_target, nuy_target = tune(error, [], matched=True, limit=1)
_, bx_target, _, by_target = twiss(error, [], matched=True, advance=True, full=False).T
etax_target, _, etay_target, _ = dispersion(error, orbit, [], limit=1)
target = torch.cat([nux_target.unsqueeze(-1), nuy_target.unsqueeze(-1), bx_target, by_target, etax_target, etay_target])
[30]:
# Create a ring with ID to be fitted
X = Matrix('X')
model = ring.clone()
model.flatten()
model.insert(X, 'MLL_S01', position=0.0)
model.splice()
[31]:
# Set parametric observalbe
def observable(knobs):
a11, a12, a13, a14, a22, a23, a24, a33, a34, a44 = knobs.reshape(-1, 1)
groups = (
('a11', None, ['X'], None),
('a12', None, ['X'], None),
('a13', None, ['X'], None),
('a14', None, ['X'], None),
('a22', None, ['X'], None),
('a23', None, ['X'], None),
('a24', None, ['X'], None),
('a33', None, ['X'], None),
('a34', None, ['X'], None),
('a44', None, ['X'], None)
)
orbit = torch.tensor(4*[0.0], dtype=dtype)
nux, nuy = tune(model, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups, matched=True)
_, bx, _, by = twiss(model, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups, matched=True, advance=True, full=False).T
etax, _, etay, _ = dispersion(model, orbit, [a11, a12, a13, a14, a22, a23, a24, a33, a34, a44], *groups)
return torch.cat([nux.unsqueeze(-1), nuy.unsqueeze(-1), bx, by, etax, etay])
[32]:
# Define objective function (LBFGS)
weights = torch.ones_like(target, dtype=dtype)
weights = weights.sqrt()
def objective(knobs):
residual = target - observable(knobs)
residual = weights*residual
return (residual**2).sum()
[33]:
# Fit (LBFGS)
knobs = torch.tensor(10*[0.0], dtype=dtype, requires_grad=True)
optimizer = torch.optim.LBFGS([knobs], lr=0.1, line_search_fn="strong_wolfe")
def closure():
optimizer.zero_grad()
value = objective(knobs)
value.backward()
return value
for epoch in range(4):
value = optimizer.step(closure)
print(value.item())
64.26083780114003
8.156500378638511e-05
8.156500378638511e-05
8.156500378638511e-05
[34]:
# Compare fitted knobs
print((torch.tensor(A, dtype=dtype) - 0.0*knobs.detach()).norm())
print((torch.tensor(A, dtype=dtype) - 1.0*knobs.detach()).norm())
tensor(0.1161, dtype=torch.float64)
tensor(0.1083, dtype=torch.float64)
[35]:
# Error
print(((observable(0.0*knobs) - target)**2).sum())
print(((observable(1.0*knobs) - target)**2).sum())
tensor(64.2608, dtype=torch.float64, grad_fn=<SumBackward0>)
tensor(8.1565e-05, dtype=torch.float64, grad_fn=<SumBackward0>)
[36]:
# Optimization loop
# Responce matrix (jacobian)
M = matrix.clone()
# Weighting covariance (sensitivity) matrix
epsilon = 1.0E-9
C = M @ M.T
C = C + epsilon*torch.eye(len(C), dtype=dtype)
# Cholesky decomposition
L = torch.linalg.cholesky(C)
# Whiten response
M = torch.linalg.solve_triangular(L, M, upper=False)
# Additional weights
# Can be used to extra weight selected observables, e.g. tunes
weights = torch.ones(len(M), dtype=dtype)
weights = weights.sqrt()
# Whiten response with additional weights
M = M*weights.unsqueeze(1)
# Iterative correction
lr = 0.75
# Initial value
knobs = torch.tensor(10*[0.0], dtype=dtype)
# Regularizaton
factor = 0.01
# Normal matrix
N = M.T @ M
# Regularized system
R = N + factor**2*torch.eye(len(N), dtype=dtype)
# Correction loop
for _ in range(16):
value = observable(knobs)
residual = target - value
residual = torch.linalg.solve_triangular(L, residual.unsqueeze(-1), upper=False).squeeze(-1)
residual = residual*weights
delta = torch.linalg.lstsq(R, M.T @ residual, driver="gels").solution
knobs += lr*delta
print(((value - target)**2).sum())
print()
tensor(64.2608, dtype=torch.float64)
tensor(4.7870, dtype=torch.float64)
tensor(0.3928, dtype=torch.float64)
tensor(0.0323, dtype=torch.float64)
tensor(0.0026, dtype=torch.float64)
tensor(0.0002, dtype=torch.float64)
tensor(1.8111e-05, dtype=torch.float64)
tensor(1.7624e-06, dtype=torch.float64)
tensor(3.7398e-07, dtype=torch.float64)
tensor(2.4343e-07, dtype=torch.float64)
tensor(2.2769e-07, dtype=torch.float64)
tensor(2.2494e-07, dtype=torch.float64)
tensor(2.2430e-07, dtype=torch.float64)
tensor(2.2413e-07, dtype=torch.float64)
tensor(2.2408e-07, dtype=torch.float64)
tensor(2.2407e-07, dtype=torch.float64)
[37]:
# Compare fitted knobs
print((torch.tensor(A, dtype=dtype) - 0.0*knobs).norm())
print((torch.tensor(A, dtype=dtype) - 1.0*knobs).norm())
tensor(0.1161, dtype=torch.float64)
tensor(0.0018, dtype=torch.float64)
[38]:
# Set fitted ID
X.A = knobs
[39]:
# Compute tunes (fractional part)
nux_model, nuy_model = tune(model, [], matched=True, limit=1)
[40]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_model, etapx_model, etaqy_model, etapy_model = dispersion(model, orbit, [], limit=1)
[41]:
# Compute twiss parameters
ax_model, bx_model, ay_model, by_model = twiss(model, [], matched=True, advance=True, full=False).T
[42]:
# Compute phase advances
mux_model, muy_model = advance(model, [], alignment=False, matched=True).T
[43]:
# Compute coupling
c_model = coupling(model, [])
[44]:
# Tune shifts
print((nux_id - nux_model))
print((nuy_id - nuy_model))
tensor(4.0325e-09, dtype=torch.float64)
tensor(2.6445e-10, dtype=torch.float64)
[45]:
# Coupling (minimal tune distance)
print(c_id)
print(c_model)
tensor(0.0004, dtype=torch.float64)
tensor(0.0006, dtype=torch.float64)
[46]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx_id - etaqx_model).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy_id - etaqy_model).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[47]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx_id - bx_model)/bx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by_id - by_model)/by_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx_id - bx_model)/bx_id)**2).mean().sqrt())
print(100*(((by_id - by_model)/by_id)**2).mean().sqrt())
tensor(0.0004, dtype=torch.float64)
tensor(0.0004, dtype=torch.float64)
[48]:
# Global tune responce matrix
def global_observable(knobs):
kf, kd = knobs
kn = torch.stack(len(QF)*[kf] + len(QD)*[kd])
return tune(ring, [kn], ('kn', None, QF + QD, None), matched=True, limit=1)
knobs = torch.tensor([0.0, 0.0], dtype=dtype)
global_target = global_observable(knobs)
global_matrix = torch.func.jacfwd(global_observable)(knobs)
print(global_target)
print(global_matrix)
tensor([0.2994, 0.1608], dtype=torch.float64)
tensor([[ 5.8543, 2.0964],
[-2.9918, -1.2602]], dtype=torch.float64)
[49]:
# Define twiss observable
def observable_twiss(kn, ks):
_, bx, _, by = twiss(ring,
[kn, ks],
('kn', None, nkn, None),
('ks', None, nks, None),
matched=True,
advance=True,
full=False,
convert=True).T
return torch.stack([bx, by]).T
[50]:
# Define dispersion observable
def observable_dispersion(kn, ks):
orbit = torch.tensor(4*[0.0], dtype=dtype)
etax, _, etay, _ = dispersion(ring,
orbit,
[kn, ks],
('kn', None, nkn, None),
('ks', None, nks, None))
return torch.stack([etax, etay]).T
[51]:
# Construct full target observable vector and corresponding responce matrix
def observable(knobs):
kn, ks = torch.split(knobs, [3, 2])
kn = Sn @ kn
ks = Ss @ ks
betas = observable_twiss(kn, ks)
etas = observable_dispersion(kn, ks)
return torch.cat([betas.flatten(), etas.flatten()])
knobs = torch.tensor((3 + 2)*[0.0], dtype=dtype)
print((target := observable(knobs)).shape)
print((matrix := torch.func.jacfwd(observable)(knobs)).shape)
torch.Size([672])
torch.Size([672, 5])
[52]:
# Define parametric observable vector
def global_observable(knobs):
kf, kd = knobs
kn = torch.stack(len(QF)*[kf] + len(QD)*[kd])
return tune(model, [kn], ('kn', None, QF + QD, None), matched=True, limit=1)
def observable_twiss(kn, ks):
_, bx, _, by = twiss(model, [kn, ks], ('kn', None, nkn, None), ('ks', None, nks, None), matched=True, advance=True, full=False, convert=True).T
return torch.stack([bx, by]).T
def observable_dispersion(kn, ks):
orbit = torch.tensor(4*[0.0], dtype=dtype)
etax, _, etay, _ = dispersion(model,
orbit,
[kn, ks],
('kn', None, nkn, None),
('ks', None, nks, None))
return torch.stack([etax, etay]).T
def observable(knobs):
kn, ks = torch.split(knobs, [3, 2])
kn = Sn @ kn
ks = Ss @ ks
betas = observable_twiss(kn, ks)
etas = observable_dispersion(kn, ks)
return torch.cat([betas.flatten(), etas.flatten()])
[53]:
# Check the residual vector norm
global_knobs = torch.tensor(2*[0.0], dtype=dtype)
knobs = torch.tensor((3 + 2)*[0.0], dtype=dtype)
print(((global_observable(global_knobs) - global_target)**2).sum())
print(((observable(knobs) - target)**2).sum())
tensor(0.0008, dtype=torch.float64)
tensor(64.2596, dtype=torch.float64)
[54]:
# Optimization loop (local)
# Responce matrix (jacobian)
M = matrix.clone()
# Weighting covariance (sensitivity) matrix
epsilon = 1.0E-9
C = M @ M.T
C = C + epsilon*torch.eye(len(C), dtype=dtype)
# Cholesky decomposition
L = torch.linalg.cholesky(C)
# Whiten response
M = torch.linalg.solve_triangular(L, M, upper=False)
# Additional weights
# Can be used to extra weight selected observables, e.g. tunes
weights = torch.ones(len(M), dtype=dtype)
weights = weights.sqrt()
# Whiten response with additional weights
M = M*weights.unsqueeze(1)
# Iterative correction
lr = 0.75
# Initial value
knobs = torch.tensor((3 + 2)*[0.0], dtype=dtype)
# Correction loop
for _ in range(8):
value = observable(knobs)
residual = target - value
residual = torch.linalg.solve_triangular(L, residual.unsqueeze(-1), upper=False).squeeze(-1)
residual = residual*weights
delta = torch.linalg.lstsq(M, residual, driver="gels").solution
knobs += lr*delta
print(((value - target)**2).sum())
print()
tensor(64.2596, dtype=torch.float64)
tensor(3.6736, dtype=torch.float64)
tensor(0.3128, dtype=torch.float64)
tensor(0.0688, dtype=torch.float64)
tensor(0.0533, dtype=torch.float64)
tensor(0.0523, dtype=torch.float64)
tensor(0.0523, dtype=torch.float64)
tensor(0.0523, dtype=torch.float64)
[55]:
# Apply final corrections
kn, ks = torch.split(knobs, [3, 2])
kn = Sn @ kn
ks = Ss @ ks
model.flatten()
for name, knob in zip(nkn, kn):
model[name].kn = (model[name].kn + knob).item()
for name, knob in zip(nks, ks):
model[name].ks = (model[name].ks + knob).item()
model.splice()
[56]:
# Optimization loop (global)
# Responce matrix (jacobian)
M = global_matrix.clone()
# Weighting covariance (sensitivity) matrix
epsilon = 1.0E-9
C = M @ M.T
C = C + epsilon*torch.eye(len(C), dtype=dtype)
# Cholesky decomposition
L = torch.linalg.cholesky(C)
# Whiten response
M = torch.linalg.solve_triangular(L, M, upper=False)
# Additional weights
# Can be used to extra weight selected observables, e.g. tunes
weights = torch.ones(len(M), dtype=dtype)
weights = weights.sqrt()
# Whiten response with additional weights
M = M*weights.unsqueeze(1)
# Iterative correction
lr = 0.75
# Initial value
global_knobs = torch.tensor(2*[0.0], dtype=dtype)
# Correction loop
for _ in range(4):
value = global_observable(global_knobs)
residual = global_target - value
residual = torch.linalg.solve_triangular(L, residual.unsqueeze(-1), upper=False).squeeze(-1)
residual = residual*weights
delta = torch.linalg.lstsq(M, residual, driver="gels").solution
global_knobs += lr*delta
print(((value - global_target)**2).sum())
print()
tensor(0.0001, dtype=torch.float64)
tensor(9.1657e-06, dtype=torch.float64)
tensor(7.9162e-07, dtype=torch.float64)
tensor(7.2546e-08, dtype=torch.float64)
[57]:
# Apply final corrections
kd, kf = global_knobs
model.flatten()
for name in QF:
model[name].kn = (model[name].kn + kd).item()
for name in QD:
model[name].kn = (model[name].kn + kf).item()
model.splice()
[58]:
# Correction
QF = [f'QF_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
QD = [f'QD_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
nkn = ['OCT_S01_02', 'QF_S01_02', 'QD_S01_02', 'QD_S01_03', 'QF_S01_03', 'OCT_S01_03']
nks = ['SD_S01_05', 'SH_S01_02', 'SH_S01_03', 'SD_S01_06']
model.flatten()
knf = {name: model[name].kn.item() for name in nkn}
ksf = {name: model[name].ks.item() for name in nks}
kff = {name: model[name].kn.item() for name in QF}
kdf = {name: model[name].kn.item() for name in QD}
model.splice()
error.flatten()
for name, knob in knf.items():
error[name].kn = knob
for name, knob in ksf.items():
error[name].ks = knob
for name, knob in kff.items():
error[name].kn = knob
for name, knob in kdf.items():
error[name].kn = knob
error.splice()
[59]:
# Compute tunes (fractional part)
nux_result, nuy_result = tune(error, [], matched=True, limit=1)
[60]:
# Compute dispersion
orbit = torch.tensor(4*[0.0], dtype=dtype)
etaqx_result, etapx_result, etaqy_result, etapy_result = dispersion(error, orbit, [], limit=1)
[61]:
# Compute twiss parameters
ax_result, bx_result, ay_result, by_result = twiss(error, [], matched=True, advance=True, full=False).T
[62]:
# Compute phase advances
mux_result, muy_result = advance(error, [], alignment=False, matched=True).T
[63]:
# Compute coupling
c_result = coupling(error, [])
[64]:
# Tune shifts
print((nux - nux_id).abs())
print((nuy - nuy_id).abs())
print()
print((nux - nux_result).abs())
print((nuy - nuy_result).abs())
print()
tensor(0.0260, dtype=torch.float64)
tensor(0.0114, dtype=torch.float64)
tensor(4.7762e-05, dtype=torch.float64)
tensor(6.7311e-05, dtype=torch.float64)
[65]:
# Coupling (minimal tune distance)
print(c)
print(c_id)
print(c_result)
tensor(0., dtype=torch.float64)
tensor(0.0004, dtype=torch.float64)
tensor(4.3788e-05, dtype=torch.float64)
[66]:
# Dispersion
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_id).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_id).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqx - etaqx_result).cpu().numpy(), fmt='-', marker='o', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), (etaqy - etaqy_result).cpu().numpy(), fmt='-', marker='o', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
[67]:
# Beta-beating
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_id)/bx).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_id)/by).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((bx - bx_result)/bx).cpu().numpy(), fmt='-', marker='o', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((by - by_result)/by).cpu().numpy(), fmt='-', marker='o', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((bx - bx_id)/bx)**2).mean().sqrt())
print(100*(((by - by_id)/by)**2).mean().sqrt())
print()
print(100*(((bx - bx_result)/bx)**2).mean().sqrt())
print(100*(((by - by_result)/by)**2).mean().sqrt())
print()
tensor(11.5994, dtype=torch.float64)
tensor(1.7916, dtype=torch.float64)
tensor(0.2074, dtype=torch.float64)
tensor(0.3840, dtype=torch.float64)
[68]:
# Phase advance
plt.figure(figsize=(12, 4))
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_id)/mux).cpu().numpy(), fmt='-', marker='x', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_id)/muy).cpu().numpy(), fmt='-', marker='x', color='red', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((mux - mux_result)/mux).cpu().numpy(), fmt='-', marker='o', color='blue', alpha=0.75)
plt.errorbar(ring.locations().cpu().numpy(), 100*((muy - muy_result)/muy).cpu().numpy(), fmt='-', marker='o', color='red', alpha=0.75)
plt.tight_layout()
plt.show()
print(100*(((mux - mux_id)/mux)**2).mean().sqrt())
print(100*(((muy - muy_id)/muy)**2).mean().sqrt())
print()
print(100*(((mux - mux_result)/mux)**2).mean().sqrt())
print(100*(((muy - muy_result)/muy)**2).mean().sqrt())
print()
tensor(8.7941, dtype=torch.float64)
tensor(1.7778, dtype=torch.float64)
tensor(0.3180, dtype=torch.float64)
tensor(0.3463, dtype=torch.float64)
[69]:
# Beta-beating and dispersion
bx_ref_bb = 100.0*(bx - bx_id) / bx
by_ref_bb = 100.0*(by - by_id) / by
bx_res_bb = 100.0*(bx - bx_result)/ bx
by_res_bb = 100.0*(by - by_result)/ by
def rms(x):
return (x**2).mean().sqrt()
rms_x_ref = rms(bx_ref_bb).item()
ptp_x_ref = (bx_ref_bb.max() - bx_ref_bb.min()).item()
rms_y_ref = rms(by_ref_bb).item()
ptp_y_ref = (by_ref_bb.max() - by_ref_bb.min()).item()
rms_x_res = rms(bx_res_bb).item()
ptp_x_res = (bx_res_bb.max() - bx_res_bb.min()).item()
rms_y_res = rms(by_res_bb).item()
ptp_y_res = (by_res_bb.max() - by_res_bb.min()).item()
s = ring.locations().cpu().numpy()
bx_ref_np = bx_ref_bb.cpu().numpy()
by_ref_np = by_ref_bb.cpu().numpy()
bx_res_np = bx_res_bb.cpu().numpy()
by_res_np = by_res_bb.cpu().numpy()
etax_ref = etaqx - etaqx_id
etay_ref = etaqy - etaqy_id
etax_res = etaqx - etaqx_result
etay_res = etaqy - etaqy_result
rms_etax_ref = rms(etax_ref).item()
ptp_etax_ref = (etax_ref.max() - etax_ref.min()).item()
rms_etay_ref = rms(etay_ref).item()
ptp_etay_ref = (etay_ref.max() - etay_ref.min()).item()
rms_etax_res = rms(etax_res).item()
ptp_etax_res = (etax_res.max() - etax_res.min()).item()
rms_etay_res = rms(etay_res).item()
ptp_etay_res = (etay_res.max() - etay_res.min()).item()
etax_ref_np = etax_ref.cpu().numpy()
etay_ref_np = etay_ref.cpu().numpy()
etax_res_np = etax_res.cpu().numpy()
etay_res_np = etay_res.cpu().numpy()
fig, (ax, ay) = plt.subplots(
2, 1, figsize=(16, 10),
sharex=True,
gridspec_kw={'hspace': 0.3}
)
ax.errorbar(s, bx_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'initial, $\beta_x$')
ax.errorbar(s, by_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'initial, $\beta_y$')
ax.errorbar(s, bx_res_np, fmt='-', marker='o', color='blue', alpha=0.75, lw=2.0, label=r'final, $\beta_x$')
ax.errorbar(s, by_res_np, fmt='-', marker='o', color='red', alpha=0.75, lw=2.0, label=r'final, $\beta_y$')
ax.set_xlabel('s [m]', fontsize=18)
ax.set_ylabel(r'$\Delta \beta / \beta$ [\%]', fontsize=18)
ax.tick_params(width=2, labelsize=16)
ax.tick_params(axis='x', length=8, direction='in')
ax.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_x_ref:05.2f}\% \quad RMS$_y$={rms_y_ref:05.2f}\% \quad '
rf'PTP$_x$={ptp_x_ref:05.2f}\% \quad PTP$_y$={ptp_y_ref:05.2f}\% \quad '
rf'$\Delta \nu_x$={(lambda x: '-' if x < 0 else '~')(nux - nux_id)}{(nux - nux_id).abs().item():.4f} \quad $\Delta \nu_y$={(lambda x: '-' if x < 0 else '~')(nuy - nuy_id)}{(nuy - nuy_id).abs().item():.4f}'
rf'\quad C={c_id.item():.6f}'
)
ax.text(0.0, 1.10, title, transform=ax.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
title = (
rf'RMS$_x$={rms_x_res:05.2f}\% \quad RMS$_y$={rms_y_res:05.2f}\% \quad '
rf'PTP$_x$={ptp_x_res:05.2f}\% \quad PTP$_y$={ptp_y_res:05.2f}\% \quad '
rf'$\Delta \nu_x$={(lambda x: '-' if x < 0 else '~')(nux - nux_result)}{(nux - nux_result).abs().item():.4f} \quad $\Delta \nu_y$={(lambda x: '-' if x < 0 else '~')(nuy - nuy_result)}{(nuy - nuy_result).abs().item():.4f}'
rf'\quad C={c_result.item():.6f}'
)
ax.text(0.0, 1.025, title, transform=ax.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
ax.legend(loc='upper right', frameon=False, fontsize=14, ncol=4)
ax.set_ylim(-20, 20)
ay.errorbar(s, etax_ref_np, fmt='-', marker='x', color='blue', alpha=0.75, lw=2.0, label=r'initial, $\eta_x$')
ay.errorbar(s, etay_ref_np, fmt='-', marker='x', color='red', alpha=0.75, lw=2.0, label=r'initial, $\eta_y$')
ay.errorbar(s, etax_res_np, fmt='-', marker='o', color='blue',alpha=0.75, lw=2.0, label=r'final, $\eta_x$')
ay.errorbar(s, etay_res_np, fmt='-', marker='o', color='red', alpha=0.75, lw=2.0, label=r'final, $\eta_y$')
ay.set_xlabel('s [m]', fontsize=18)
ay.set_ylabel(r'$\Delta \eta$ [m]', fontsize=18)
ay.tick_params(width=2, labelsize=16)
ay.tick_params(axis='x', length=8, direction='in')
ay.tick_params(axis='y', length=8, direction='in')
title = (
rf'RMS$_x$={rms_etax_ref:.4E} m \quad RMS$_y$={rms_etay_ref:.4E} m \quad '
rf'PTP$_x$={ptp_etax_ref:.4E} m \quad PTP$_y$={ptp_etay_ref:.4E} m \quad '
)
ay.text(0.0, 1.125, title, transform=ay.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
title = (
rf'RMS$_x$={rms_etax_res:.4E} m \quad RMS$_y$={rms_etay_res:.4E} m \quad '
rf'PTP$_x$={ptp_etax_res:.4E} m \quad PTP$_y$={ptp_etay_res:.4E} m \quad '
)
ay.text(0.0, 1.05, title, transform=ay.transAxes, ha='left', va='bottom', fontsize=16, fontfamily='monospace')
plt.setp(ax.spines.values(), linewidth=2.0)
plt.setp(ay.spines.values(), linewidth=2.0)
plt.show()
[70]:
# Knobs
QF = [f'QF_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
QD = [f'QD_S{i:02}_{j:02}' for j in [2, 3] for i in range(1, 12 + 1)]
nkn = ['OCT_S01_02', 'QF_S01_02', 'QD_S01_02', 'QD_S01_03', 'QF_S01_03', 'OCT_S01_03']
nks = ['SD_S01_05', 'SH_S01_02', 'SH_S01_03', 'SD_S01_06']
ring.flatten()
kni = {name: ring[name].kn.item() for name in nkn}
ksi = {name: ring[name].ks.item() for name in nks}
kfi = {name: ring[name].kn.item() for name in QF}
kdi = {name: ring[name].kn.item() for name in QD}
error.flatten()
knf = {name: error[name].kn.item() for name in nkn}
ksf = {name: error[name].ks.item() for name in nks}
kff = {name: error[name].kn.item() for name in QF}
kdf = {name: error[name].kn.item() for name in QD}
print(dkf := [(kff[name] - kfi[name]) for name in kfi if name not in nkn])
print()
print(dkd := [(kdf[name] - kdi[name]) for name in kdi if name not in nkn])
print()
dkf, *_ = dkf
dkd, *_ = dkd
dk = {'DKF': dkf, 'DKD': dkd}
[-0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803, -0.02460512600965803]
[0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138, 0.06706966882312138]
[71]:
import numpy as np
dkn = np.array([knf[i]/kni[i] - 1 for i in kni])
dks = np.array([ksf[i] - ksi[i] for i in ksi])
n_kn = len(dkn)
n_ks = len(dks)
n_dk = len(dk)
y_kn = np.arange(n_kn)
y_dk = np.arange(n_dk) + n_kn + 2*1
y_ks = np.arange(n_ks) + n_kn + n_dk + 2*2
fig, ax = plt.subplots(figsize=(8, 4))
ay = ax.twiny()
bar_kn = ax.barh(y_kn, dkn, height=0.6, alpha=1, label=r'normal', color='red')
bar_dk = ax.barh(y_dk, list(dk.values()), height=0.6, alpha=1, label=r'global', color='black')
bar_ks = ay.barh(y_ks, dks, height=0.6, alpha=1, label=r'skew', color='blue')
yticks = np.concatenate([y_kn, y_dk, y_ks])
yticklabels = [*kni.keys()] + [*dk.keys()] + [*ksi.keys()]
ax.set_yticks(yticks)
ax.set_yticklabels(yticklabels, fontsize=12)
ay.set_ylim(ax.get_ylim())
ax.axvline(0.0, color='black', linewidth=1.0, linestyle='--', alpha=0.5)
ay.axvline(0.0, color='black', linewidth=1.0, linestyle='--', alpha=0.5)
xmax = max(np.max(np.abs(dkn)), np.max(np.abs(list(dk.values()))))
ax.set_xlim(-1.1 * xmax, 1.1 * xmax)
xmax = np.max(np.abs(dks))
ay.set_xlim(-1.1 * xmax, 1.1 * xmax)
ax.tick_params(axis='x', length=6, width=1.5, direction='in', labelsize=12, bottom=True, top=False, labelbottom=True, labeltop=False)
ax.tick_params(axis='y', length=0, width=0, labelsize=12)
ay.tick_params(axis='x', length=6, width=1.5, direction='in', labelsize=12, bottom=False, top=True, labelbottom=False, labeltop=True)
ax.set_xlabel(r'FSE (normal \& global)', fontsize=12)
ay.set_xlabel(r'Delta (skew)', fontsize=12)
plt.setp(ax.spines.values(), linewidth=2.0)
plt.setp(ay.spines.values(), linewidth=2.0)
ax.spines['top'].set_visible(False)
ay.spines['bottom'].set_visible(False)
plt.tight_layout()
plt.show()